全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
财富汇
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
这些半导体股票是华尔街股票,其中一支能上涨30%
go
lg
...
注增加中获益,因为它的一些芯片组已经被
谷
歌
用于其人工智能技术。 FactSet的数据显示,该股的分析师平均目标价暗示的上涨空间是名单中最高的,达到33%。 另一支上榜的股票是 Analog Devices(ADI)。近60%的分析师将其评为买入评级,该股的平均目标价意味着未来12个月有14%的上升空间。 该公司上周公布的第一季度财报中盈利和营收都超出分析师预期,同时第二季度的财报指引也超出预期。 Analog Devices CEO Vincent Roche在一份声明中表示:"ADI的业务运营良好,营收同比增长21%,每股盈利创历史新高。展望未来,普适性传感、人工智能驱动的边缘计算和无处不在的连接正在实现智能边缘的新能力、新应用和新市场。" 美国银行分析师Vivek Arya称该公司在这些因素的支撑下可以成为"最佳的股票受益者"。他还把模Analog Devices的目标价格从215美元提高到230美元/股。新的目标意味着比周五的收盘价有18.6%的上升空间。 "ADI应该能够在行业低迷的情况下保持盈利能力的增长。更重要的是,随着资本强度可能达到8%-9%的峰值并随着时间的推移而下降,我们看到了通往40%以上自由现金流利润率的路径,远远高于同行TXN(从30%多下降到20%多),"Arya表示。 Advanced Micro Devices(AMD)也入选,近60%的分析师将其评级为买入,平均目标价意味着有14.1%的上升空间。迄今为止,该股今年已经上涨了21%以上。然而,该公司上个月末警告说,它可能在第一季度遭受10%的营收下跌。 尽管如此,大多数分析师还是支持AMD,包括高盛的Toshiya Hari。 Hari在一份报告中说:"鉴于我们对服务器CPU市场份额大幅扩张的预期,以及23/2024年下半年利润率改善的潜力,我们仍然对该股持正面态度。"该分析师重申了他对AMD的买入评级。 其他进入名单的公司有Synopsys、Microchip Technology、Applied Materials、KLA和Broadcom。
lg
...
金融界
2023-02-22
盘点当下最强大的叙事:加密货币领域最大的收益
go
lg
...
100 万用户的应用程序之后,微软和
谷
歌
等公司迅速投资人工智能领域。随着投机行为的泛滥,这导致 AI 山寨币爆炸式增长。 但是,在这里需要认识到的重要一点是,人工智能和加密货币是非常早期的,而且最近的价格走势在很大程度上是由投机而非基本面驱动的。 这是一个极其基于“谣言”的叙事。因此,尽管有泡沫,但由于新闻倾向于对价格产生短期积极影响,因此做空变得非常困难。 需要注意的是,强劲的趋势往往在大盘上涨期表现出色。因此,如果比特币表现出看涨的价格行动,就很难忽视像 AI 这样的爆炸性叙事。 7. GambleFi 去中心化的du场背后的理论与 DEXs 极其相似:人们喜欢du博,并需要在链上进行du博的地方。 我们还没有真正看到高质量的bo彩项目,但我相信它们会到来。 8. Chinese Coin 以下因素是最近促成许多这些代币暴涨的原因: • 中国的货币刺激; • 香港加密合法化; • 亚洲未平仓合约增加。 下面是我正在关注的“香港概念币”的清单。注意:这纯粹是从交易角度出发,任何进场/出场都将与技术面保持一致。 其中许多代币的基本面令人怀疑,而且许多代币不符合我的长期仓位框架(截图于二月十八日)。 在加密行业你想抓住下一波牛市机会你得有一个优质圈子,大家就能抱团取暖,保持洞察力 想抱团取暖,或者有疑惑的,欢迎加入我们 狗哥他来了 感谢阅读,喜欢的朋友可以点个赞关注哦,我们下期再见! 来源:金色财经
lg
...
金色财经
2023-02-21
金色观察 | 8个最有潜力的加密叙事
go
lg
...
上最快突破百万用户的应用程序后,微软和
谷
歌
等公司迅速向人工智能(AI)领域进行投资。 这导致了AI 山寨币的爆发,投机活动猖獗。 但是,这里需要认识到的重要一点是,人工智能和加密技术还处于非常早期的阶段,最近的大部分价格走势更多是由投机而非基本面驱动。 @avichal在几周前的一次采访中对这一点进行了说明。 这是一种极其基于新闻的叙事。因此,尽管存在泡沫,但由于新闻倾向于对价格产生短期积极影响,让做空变得非常困难。 需要注意的重点是,强劲的趋势往往会在扩张期表现更好。 因此,如果比特币表现出看涨的价格走势,就很难忽视AI这样的爆炸性叙事。 这个帖子对16个AI项目进行了很好的解释说明。 7、GambleFi 去中心化博彩背后的理论与DEX极其相似:人们喜欢赌博,并且需要有链上赌博的场所。 我们还没有看到有很多高质量的博彩项目推出,但我相信它们就快出现了。 @LouisCooper_一直在进行一项伟大的工作,研究并提供关于这个领域的更新内容。 8、中国币(Chinese Coins) 以下因素促进了这些币的近期流出: • 中国的货币刺激政策 • 香港加密货币合法化 • 亚洲未平仓头寸的增加 在亚洲的Twitter社区里有很多alpha用户,由于语言障碍,很多人都不为人知。 下面是一些可以关注的顶级创作者(充分利用Twitter翻译按钮功能)。 这是我正在观察的中国币的清单。 注意:此清单纯粹基于交易角度,任何进场/离场都将与技术面一致。 其中很多币的基本面都令人质疑,还有许多不符合我的长期头寸框架。 我并不想关注本文中的所有叙事(因为太多了),但如果你有兴趣想了解更多内容——这是一篇不错的文章。 我以后会发布关于这些叙事的更新文章,以及我所发现的新叙事。 关注我@milesdeutscher获取最新信息。 来源:金色财经
lg
...
金色财经
2023-02-21
AI绘画对画师有多大的影响
go
lg
...
像。包括OpenAI的DALL-E、
谷
歌
大脑的Imagen和Parti(2022年5月发布)以及微软的NUWA-Infinity。输入形式还可以包括图像和关键字和/或配置参数,通常通过关键短语输入艺术风格,仅仅通过短短几分钟甚至几十秒Ai就可以输出几张高质量的图片。毫无疑问,Ai图像生成技术很大促进了绘画圈的竞争力,但是同样的Ai绘画似乎也在挤压着初,中阶段画师的生存空间。也在某种意义上磨灭着现实中画手的创作热情 但是在现有技术手段中,Ai没有真正的原创能力,无法做到创新的制作,所以现实中创作的画手们也有着Ai无法替代的方面,虽然未来的画师行业会受到Ai技术的冲击,但是那些不断提升并且有着丰富创造性的画师仍旧不可替代,任何一个人的思维与想法都无法被数字所取代。 来源:金色财经
lg
...
金色财经
2023-02-21
“AI+Web3” 概念最新融资项目盘点
go
lg
...
备竞赛”。微软重金砸向 OpenAI,
谷
歌
发布企业级紧急预警,应对性推出了自己搜索型聊天机器人巴德(Bard),更有 Databricks、Cruise、Grammarly 等一众AI概念企业估值超过百亿美元,并引发了从软件到底层算法,以及硬件芯片等多个层面的竞争,可以说2023的开年就充斥着一股“火药味”。 而 AI 的百搭性,给它绘制了一幅更为宏大的应用场景,与生物技术、计算机视觉、语言处理、Web3、物流、农业科技等方面的结合,能展示出了一种科幻般的畅想。据普华永道的估计,未来在 AI 的推动下,到2030年,AI 将为世界经济贡献15.7万亿美元,累计推动全球GDP增长14%。本文主要关注 AI+Web3 领域,从2023年最新的融资项目中寻找这一概念的项目,助你寻找 Alpha。 Botto 投资机构:Variant Fund 融资金额:未公开 Botto 是一个通过 DAO 治理的生成艺术社区。Botto 引擎使用了 Stable Diffusion、VQGAN + CLIP、GPT-3 等多种模型,根据文本生成艺术图像,每周,会根据社区不同艺术倾向、审美风格等要素,预选出350张图像呈现给社区进行投票,将最受欢迎的图像铸造为 NFT,并最终在 SuperRare 上进行拍卖,以此获得收入并对 Botto 引擎进行训练。目前,参与社区的治理需要一定的 Token 或者 Pass 卡。 从本质上来看,Botto 是 AI 生成艺术NFT与 DAO 治理的结合体,杂糅了AI的概念,也融合了NFT、DAO和代币经济学等方面的内容,能否维持社区长久且稳定运营也其考验着治理者的智慧。 Mawari 投资机构:Blockchange Ventures、Decasonic、Accord Ventures、Abies Ventures等 融资金额:650万美元/种子轮 目前,Mawari 正在构建名为 Mawari Network 的产品:一个基于 Web3 原则设计的去中心化 3D 和 XR 内容交付平台,也是一个分布式内容交付和收益共享网络。旨在通过压缩、AI机器学习和区块链等技术满足实时3D渲染和流媒体传输拥堵等问题,以实现 3D 元宇宙并进一步扩展至XR设备中,希望将 Mawari 打造成为元宇宙中的 Akamai(全球知名的内容交付网络服务提供商)。 就其发展愿景来说可以说非常宏大,所面临的技术难度同样也不小,不过,由于项目官网所展示的信息极其有限,如果想要对项目进行更全面的评估,需要等待项目方公布更多的信息。 Addressable 投资机构:Viola Ventures、Fabric Ventures、Mensch Capital、NorthIslandVC 融资金额:750万美元/种子轮 Addressable 是一家Web3营销公司,帮助 Web3 营销人员从社交媒体账户和钱包中收集数据,并根据相似性匹配信息,以构建更准确的目标受众画像。鉴于当前区块链上行为的匿名性,Addressable 将匿名区块链受众与对应的社交媒体联系起来,解决当今 Web3 增长的难题,它提供了一个 SaaS 平台,使得 Web3 营销人员提可以向他们的受众传达信息。目前,Addressable仅跟踪 Ethereum 上的用户数据,Web2平台也主要是Twitter,产品还处于Demo阶段。 Plai Labs 投资机构:a16z 融资金额:3200万美元 种子轮 Plai Labs 的定位是 Web3 和 AI 社交平台。两位创始人 Chris DeWolfe 与 Aber Whitcomb 曾是社交媒体平台 MySpace 和游戏工作室 Jam City 的创始人,都是连续创业者,他们计划通过 AI 和 web3 来构建下一代社交平台,供用户一起玩耍、交流、战斗、交易和冒险。 而 Champions Ascension 是由 Plai Labs 推出首款多人在线角色扮演游戏,游戏以马西纳的传说为蓝本,让玩家带着他们的宠物在元宇宙漫游参与活动,此外 Plai Labs 还在构建一个AI协议平台,该平台将帮助处理从用户生成内容(UGC)到匹配到2D到3D资产渲染的所有内容。 Trusta labs 投资机构:SevenX Ventures、Vision Plus、HashKey等 融资金额:300万美元+ Trusta labs 是一家链上数据分析公司,其核心产品为 TrustScan,弥合链上原始数据与洞察DID声誉特征的需求之间的差距,通过 AI 技术为引擎,为 DI D主体在Web3世界的声誉提供深度分析和评估,涵盖女巫攻击、欺诈风险、信用评分等。根据其官网披露,目前 TrustScan 已经检测出了超过100万的女巫地址。 Creatora 投资机构:a16z 融资金额:1000万 A轮 Creatora 是一个面向创作者的元宇宙项目,拥有一个用户生成内容 (UGC) 的元宇宙引擎,创作者能够创建、分发和将游戏元宇宙化。 任何创作都可以货币化,它模糊创作者和消费者之间的界限,创造一个一切皆可 MetaFi 的元宇宙空间。 据其官方透露,Createra 在亚洲积累了近1500万的Z世代用户、50 万创作者,其发展重心也主要以 Z 世代为主,而在项目中,Genesis land 是主要的核心资产,它将决定后续奖励/资产的分配以及在Createra的曝光机会。 Sortium 投资机构:Arca 融资金额:775 万美元/种子轮 Sortium 是一家结合了 AI 和 Web3 的娱乐科技公司。Sortium 专注于技术框架的构建,以帮助客户了解生成式AI系统、区块链和动态经济系统等,并在实现应用场景的使用,Sortium 推出了名为 CosmoGene 的P2E游戏,CosmoGene 游戏中,通过AI支持的虚拟DNA,玩家可以根据基因创造独特的体验。 通过上文描述来看,AI+Web3 的初创项目大多是弱 AI 项目,应用结合的深度并不高,此外,应用场景也主要集中在游戏、NFT以及链上数据分析等几个核心领域,我们以期待 Web3 能与 AI 有更加深度的结合,诸如出现智能协议、智能 DApp 甚至于智能区块链等。 来源:金色财经
lg
...
金色财经
2023-02-21
人工智能时代的算力挑战
go
lg
...
行专门算法,而不能执行通用计算。比如,
谷
歌
和NASA联合开发的D-Wave就只能执行量子退火(Quantum Annealing)算法,而我国研发的光量子计算机“九章”则是专门被用来研究“高斯玻色取样”问题的。尽管它们在各自的专业领域表现十分优异,但都还不能用来解决通用问题。这就好像游戏中的群体攻击大招,虽然攻击范围广,但是对每个个体的杀伤力都比较弱。因此,如果遇上大群的小怪,群体攻击固然厉害,但如果遇上防御高、血条厚的Boss,这种攻击就派不上用处了。 从这个角度看,如果我们希望让量子计算大发神威,就必须先找出适合量子计算应用的问题和场景,然后再找到相应的算法。与此同时,我们也必须认识到,虽然量子计算的研发和探索十分重要,但是它和对其他技术路径的探索之间更应该是互补,而不是替代的关系。 3、通过改进算法节约算力 如果说,通过高性能计算、分布式计算,以及量子计算等手段来提升算力是“开源”,那么通过改进算法来节约算力就是“节流”。从提升计算效率、减少因计算而产生的经济、环境成本而言,开源和节流在某种程度上具有同等重要的价值。 在ChatGPT爆火之后,大模型开始越来越受到人们的青睐。由于在同等条件下,模型的参数越多、训练的数据越大,它的表现就越好,因此为了追求模型的更好表现,现在的模型正在变得越来越大。我们知道,现在的ChatGPT主要是在GPT-3.5的基础上训练的。在它出现之前,GPT共经历了三代。GPT-1的参数大约为1.17亿个,预训练数据为5GB,从现在看来并不算多;到了GPT-2,参数量就增加到了15亿个,预训练数据也达到了40GB;而到了GPT-3,参数量则已经迅速膨胀到了骇人的1750亿个,预训练数据也达到了45TB。为了训练GPT-3,单次成本就需要140万美元。尽管OpenAI并没有公布GPT-3.5的具体情况,但可以想象,它的参数量和预训练数据上都会比GPT-3更高。为了训练这个模型,微软专门组建了一个由1万个V100GPU组成的高性能网络集群,总算力消耗达到了3640“算力当量”——也就是说,如果用一台每秒计算一千万亿次的计算机来训练这个模型,那么大约需要近十年才能完成这个任务。 如果任由这种“一代更比一代大”的趋势持续下去,那么在未来几年,对算力的需求将会出现爆炸性的增长。一项最新的研究估计,在5年之后,AI模型需要的算力可能会是现在的100万倍。很显然,由此产生的经济和环境成本将会是十分惊人的。 令人欣慰的是,目前已经有不少研究者希望改进算法、优化模型来减少对算力的需求,并且已经取得了一定的成就。比如,就在今年1月3日,来自奥地利科学技术研究所 (ISTA)的研究人员埃利亚斯·弗朗塔(Elias Frantar)和丹·阿里斯特尔(Dan Alistarh)合作进行了一项研究,首次针对 100至 1000亿参数的模型规模,提出了精确的单次剪枝方法SparseGPT。SparseGPT可以将GPT系列模型单次剪枝到 50%的稀疏性,而无需任何重新训练。以目前最大的公开可用的GPT-175B模型为例,只需要使用单个GPU在几个小时内就能实现这种剪枝。不仅如此,SparseGPT还很准确,能将精度损失降到最小。在进行了类似的修剪之后,这些大模型在训练时所需要的计算量就会大幅减少,其对算力的需求也就会相应下降。 关于提升算力、支持人工智能发展的政策思考 随着ChatGPT引领了新一轮的人工智能热潮,市场上对算力的需求也会出现爆炸性的增长。在这种情况下,为了有力支撑人工智能的发展,就必须要通过政策的手段引导算力供给的大幅度增加。而要实现这一点,以下几方面的工作可能是最为值得重视的。 第一,应当加快对算力基础设施的建设和布局,提升对全社会算力需求的支持。如前所述,从目前看,分布式计算,尤其是其中的云计算是提升算力的一个有效之举。而要让云计算的效应充分发挥,就需要大力建设各类算力基础设施。唯有如此,才可以让人们随时随地都可以直接通过网络获得所需的算力资源。 这里需要指出的是,在布局算力基础设施的时候,应当慎重考虑它们的地域和空间分布,尽可能降低算力的成本。我们知道,不同的地区的土地、水、电力等要素的价格是不同的,这决定了在不同地区生产相同的算力所需要的成本也不尽相同。因此,在建设算力基础设施时,必须统筹全局,尽可能优化成本。需要指出的是,我国正在推进的“东数西算”工程就是这个思路的一个体现。由于我国东部各种资源的使用成本都要高于西部,因此在西部地区建立算力设施,就会大幅降低算力的供给成本,从而在全国范围内达到更优的配置效率。 第二,应当加强与算力相关的硬件技术及其应用的研发,为增加算力供应提供支持。与算力相关的硬件技术既包括基于经典计算的各种硬件,如芯片、高性能计算机等,也包括超越经典计算理论,根据新计算理论开发的硬件,如量子计算机等。从供给的角度看,这些硬件是根本,它们的性能直接关系到算力提供的可能性界限。因此,必须用政策积极促进这些硬件的攻关和研发。尤其是对于一些“卡脖子”的项目,应当首先加以突破。 这里需要指出的是,在进行技术研发的同时,也应该积极探索技术的应用。例如,我们现在已经在量子计算领域取得了一些成果,但是由于用例的缺乏,这些成果并没有能够转化为现实的应用。从这个意义上讲,我们也需要加强对技术应用的研究。如果可以把一些计算问题转化成量子计算问题,就可以充分发挥量子计算机的优势,实现计算效率的大幅提升。 第三,应当对算法、架构等软件层面的要素进行优化,在保证AI产品性能的同时,尽可能减少对算力的依赖。从降低AI计算成本的角度看,降低模型的算力需求和提升算力具有同等重要的意义。因此,在用政策的手段促进算力供给的同时,也应当以同样的力度对算法、架构和模型的优化予以同等的激励。 考虑到类似的成果具有十分巨大的社会正外部性,因此用专利来保护它们并不是最合适的。因此,可以积极鼓励对取得类似成功的人员和单位给予直接的奖励,并同时鼓励他们将这些成果向全社会开源;也可以考虑由政府出面,对类似的模型产品进行招标采购。如果有个人和单位可以按照要求提供相应的成果,政府就支付相应的费用,并对成果进行开源。通过这些举措,就可以很好地激励人们积极投身到改进模型、节约算力的事业中,也可以在有成果产出时,让全社会及时享受到这些成果。 总而言之,在人工智能突飞猛进的时代,算力可能是决定人工智能发展上限的一个关键因素。唯有在算力问题上实现突破,人工智能的发展才可能有根本保障。 来源:金色财经
lg
...
金色财经
2023-02-21
一文速览当下热门的加密叙事:ZK、LSD、Chinese Coin...
go
lg
...
100 万用户的应用程序之后,微软和
谷
歌
等公司迅速投资人工智能领域。随着投机行为的泛滥,这导致 AI 山寨币爆炸式增长。 但是,在这里需要认识到的重要一点是,人工智能和加密货币是非常早期的,而且最近的价格走势在很大程度上是由投机而非基本面驱动的。 这是一个极其基于“谣言”的叙事。因此,尽管有泡沫,但由于新闻倾向于对价格产生短期积极影响,因此做空变得非常困难。 需要注意的是,强劲的趋势往往在大盘上涨期表现出色。因此,如果比特币表现出看涨的价格行动,就很难忽视像 AI 这样的爆炸性叙事。 7. GambleFi 去中心化的赌场背后的理论与 DEXs 极其相似:人们喜欢赌博,并需要在链上进行赌博的地方。 我们还没有真正看到高质量的博彩项目,但我相信它们会到来。 8. Chinese Coin 以下因素是最近促成许多这些代币暴涨的原因: • 中国的货币刺激; • 香港加密合法化; • 亚洲未平仓合约增加。 以下是我正在关注的“代币”的清单。注意:这纯粹是从交易角度出发,任何进场/出场都将与技术面保持一致。 其中许多代币的基本面令人怀疑,而且许多代币不符合我的长期仓位框架(截图于二月十八日)。 来源:金色财经
lg
...
金色财经
2023-02-21
美股休市,亚马逊访问量稳坐第一,标普500ETF(513500)成交活跃
go
lg
...
亚马逊跌0.97%,奈飞跌0.78%,
谷
歌
跌1.21%,脸书涨0.26%%,微软跌1.56%。 近日,市场研究公司CasaleggioAssociati发布了2月份意大利电商网站排名。结果显示,亚马逊2月份的访问量超过5022万,成为意大利2月访问量最高的电商网站。值得一提的是,上个月亚马逊的排名也是第一。 摩根士丹利分析师BrianNowak在一份报告中重申了对亚马逊的看涨前景。预计亚马逊的营收将在2023年第二季度末、第三季度初触底,仅实现中个位数同比增长,但会在第四季度恢复一定程度的强劲增长。他指出,亚马逊的积压订单继续稳步增长,增强了他对该股的信心。 (来源:界面AI) 声明:本条内容由界面AI生成并授权使用,内容仅供参考,不构成投资建议。AI技术战略支持为有连云。
lg
...
有连云
2023-02-21
Web3大洗牌:东进西退
go
lg
...
取代了Web3成为了下一个故事的主角,
谷
歌
趋势显示,生成式AI搜索量在过去一年内暴涨80%,而与之对应的Web3 下降40%,科技企业的焦虑贩卖成为资本圈的精神食粮。对于行走在风口的风投而言,造神显然比神本身更值得关注,至于是伪神还是斯德哥尔摩综合征,在一轮循环后也就无人在意了。 而在日前,Alex联系笔者,提及此前裁撤的项目将在香港再次重启,平台提出了返聘要求,但他还是选择拒绝,下定决心离开了这个光怪陆离的行业。 来源:金色财经
lg
...
金色财经
2023-02-21
OpenAI与AIGC:改变人类生产范式 通往“万物的摩尔定律”
go
lg
...
该方案大幅提高了对数据集的使用效率。
谷
歌
发布的 BERT 是 Transformer 时代的先驱,OpenAI 发布的 GPT-2 以相似的结构、更胜一筹的算力后来居上。直到2020年6月,OpenAI 发布了 GPT-3,成为该模型族,甚至整个文本生成领域的标杆。 GPT-3 的成功在于量变产生质变:参数比 GPT-2 多了两个数量级(1750亿vs 15亿个参数),它用的最大数据集在处理前容量达到 45TB。 如此巨大的模型量级,效果也是史无前例的。给 GPT-3 输入新闻标题”联合卫理公会同意这一历史性分裂“和副标题”反对同性恋婚姻的人将创建自己的教派“,生成了一则以假乱真的新闻,评估人员判断出其为AI生成的准确率仅为 12%。以下是这则新闻的节选: 据《华盛顿邮报》报道,经过两天的激烈辩论,联合卫理公会同意了一次历史性的分裂:要么创立新教派,要么”保持神学和社会意义上的保守“。大部分参加五月教会年度会议的代表投票赞成进一步禁止 LGBTQ 神职人员的任命,并制定新的规则”规范“主持同性婚礼的神职人员。但是反对这些措施的人有一个新计划:于2020 年组成一个新教派”基督教卫理公会“。 要达到上述效果,成本不容小觑:从公开数据看,训练一个 BERT 模型租用云算力要花约 1.2 万美元,训练 GPT-2 每小时要花费 256 美元,但 OpenAI 并未公布总计时间成本。考虑到 GPT-3 需要的算力是 BERT 的 2000 多倍,预估发布当时的训练成本肯定是千万美元级别,以至于研究者在论文第九页说:我们发现了一个 bug,但没钱再去重新训练模型,就先这么算了吧。 2、背后DALL·E 2,从文本到图片 GPT-3杀青后,OpenAI 把大模型的思路迁移到了图片多模态(multimodal)生成领域,从文本到图片主要有两步:多模态匹配:将 AI 对文本的理解迁移至对图片的理解;图片生成:生成出最符合要求的高质量图片。 对于多模态学习模块,OpenAI 在 2021 年推出了 CLIP 模型,该模型以人类的方式浏览图像并总结为文本内容,也可以转置为浏览文本并总结为图像内容(DALL·E 2中的使用方式)。 CLIP (Contrastive Language-Image Pre-Training) 最初的核心思想比较简单:在一个图像-文本对数据集上训练一个比对模型,对来自同一样本对的图像和文本产生高相似性得分,而对不匹配的文本和图像产生低相似性分(用当前图像和训练集中的其他对的文本构成不匹配的样本对)。 对于内容生成模块,前面探讨了文本领域:10 年代末 NLP 领域生成模型的发展,是 GPT-3 暴力出奇迹的温床。而计算机视觉 CV 领域 10 年代最重要的生成模型是 2014 年发布的生成对抗网络(GAN),红极一时的 DeepFake 便是基于这个模型。GAN的全称是 Generative Adversarial Networks——生成对抗网络,显然”对抗“是其核心精神。 注:受博弈论启发,GAN 在训练一个子模型A的同时,训练另一个子模型B来判断它的同僚A生成的是真实图像还是伪造图像,两者在一个极小极大的博弈中不断变强。 当A生成足以”骗“过B的图像时,模型认为它比较好地拟合出了真实图像的数据分布,进而用于生成逼真的图像。当然,GAN方法也存在一个问题,博弈均衡点的不稳定性加上深度学习的黑盒特性使其生成。 不过 OpenAI 大模型生成图片使用的已不是 GAN 了,而是扩散模型。2021年,生成扩散模型(Diffusion Model)在学界开始受到关注,成为图片生成领域新贵。 它在发表之初其实并没有收到太多的关注,主要有两点原因: 其一灵感来自于热力学领域,理解成本稍高; 其二计算成本更高,对于大多高校学术实验室的显卡配置而言,训练时间比 GAN 更长更难接受。 该模型借鉴了热力学中扩散过程的条件概率传递方式,通过主动增加图片中的噪音破坏训练数据,然后模型反复训练找出如何逆转这种噪音过程恢复原始图像,训练完成后。扩散模型就可以应用去噪方法从随机输入中合成新颖的”干净“数据。该方法的生成效果和图片分辨率上都有显著提升。 不过,算力正是大模型研发公司的强项,很快扩散模型就在大公司的调试下成为生成模型新标杆,当前最先进的两个文本生成图像模型——OpenAI 的 DALL·E 2 和 Google 的 Imagen,都基于扩散模型。DALL·E 2 生成的图像分辨率达到了 1024 × 1024 像素。例如下图”生成一幅莫奈风格的日出时坐在田野里的狐狸的图像“: 除了图像生成质量高,DALL·E 2 最引以为傲的是 inpainting 功能:基于文本引导进行图像编辑,在考虑阴影、反射和纹理的同时添加和删除元素,其随机性很适合为画师基于现有画作提供创作的灵感。比如下图中加入一只符合该油画风格的柯基: DALL·E 2 发布才五个月,尚没有 OpenAI 的商业化api开放,但有 Stable Diffusion、MidJourney 等下游公司进行了复现乃至商业化,将在后文应用部分介绍。 3、OpenAI的使命——开拓通往 AGI 之路 AIGC 大模型取得突破,OpenAI 只开放了api和模型思路供大家借鉴和使用,没去做下游使用场景的商业产品,是为什么呢?因为 OpenAI 的目标从来不是商业产品,而是通用人工智能 AGI。 OpenAI 的创始人 Sam Altman 是 YC 前总裁,投出过 Airbnb、Stripe、Reddit 等明星独角兽(另一位创始人 Elon Musk 在 18 年因为特斯拉与 OpenAI ”利益相关“离开)。 他在 21 年发布过一篇著名的博客《万物的摩尔定律》,其中提到 OpenAI,乃至整个 AI 行业的使命是通过实现 AGI 来降低所有人经济生活中的智能成本。这里所谓 AGI,指的是能完成平均水准人类各类任务的智能体。 因此,OpenAI 始终保持着学术型企业的姿态处于行业上游,成为学界与业界的桥梁。当学界涌现出最新的 state-of-art 模型,他们能抓住机会通过海量算力和数据集的堆叠扩大模型的规模,达到模型意义上的规模经济。 在此之后克制地开放商业化 api,一方面是为了打平能源成本,更主要是通过数据飞轮效应带来的模型进化收益:积累更富裕的数据优化迭代下一代大模型,在通往 AGI 的路上走得更坚实。 定位相似的另一家公司是 Deepmind——2010年成立,2014 年被
谷
歌
收购。同样背靠科技巨头,也同样从强化学习智能决策领域起家,麾下的 AlphaGo 名声在外,Elon Musk 和 Sam Altman 刚开始组局创办 OpenAI,首要的研究领域就是步 AlphaGo 后尘的游戏决策 AI。 不过 19 年后,两者的研究重心出现了分叉。DeepMind 转向使用 AI 解决基础科学如生物、数学等问题:AlphaFold 在预测蛋白质结构上取得了突破性的进展,另一个 AI 模型 AlphaTensor 自己探索出了一个 50 年悬而未决的数学问题:找到两个矩阵相乘的最快方法,两个研究都登上了 Nature 杂志的封面。而 OpenAI 则转向了日常应用的内容生成 AIGC 领域。 AIGC大模型是通往 AGI 路上极为重要、也有些出乎意料的一站。其重要性体现在 AI 对人类传达信息的载体有了更好的学习,在此基础上各个媒介之间的互通成为可能。 例如从自然语言生成编程语言,可以产生新的人机交互方式;从自然语言生成图片和视频,可以革新内容行业的生产范式。意外性则是,最先可能被替代的不是蓝领,而是创作者,DeepMind 甚至在协助科学家一起探索科研的边界。 OpenAI 的模式也给了下游创业者更多空间。可以类比当年预训练语言模型发展初期,Hugging Face把握机会成为大模型下游的模型开源平台,补足了模型规模膨胀下机器学习民主化的市场空间。 而对 AIGC 模型,未来会有一类基于大模型的创业公司,把预训练完成的 AIGC 模型针对每个子领域进行调优。不只需要模型参数优化,更要基于行业落地场景、产品交互方式、后续服务等,帮助某个行业真正用上大模型。 正如 AI 的 bitter lesson 一样矛盾,投资者需要短期投资回报率、研究者需要短期投稿成功率,尽管OpenAI 走在通往 AGI 正确的路上,这条路道阻且长,短期很难看到极大的突破。而 Sam Altman 展望的大模型应用层公司很有可能有更高的高投资回报,让我们来介绍下主要的分类与创业者。 百家争鸣的 AIGC 大模型应用层 对应 OpenAI 大模型发布的顺序,模型应用层相对最成熟的是文本生成领域,其次是图片生成领域,其他领域由于还未出现统治级的大模型相对落后。 文本领域天然应用场景丰富,且 GPT-3 开放 api 很久,细分赛道很多。大致可以根据生成内容不同分为两类:机器编程语言生成、人类自然语言生成。前者主要有代码和软件行为的生成等,后者主要有新闻撰写、文案创作、聊天机器人等。 而图片领域当前还专注于图片自身内容的生成,预期随着未来3D、视频相关内容生成能力的增强,会有更多结合不同业务场景如游戏、影视这样细分领域的创业公司。 以下是海外各子领域创业公司的梳理,接下来将针对几个领域的重要公司进行介绍。 1、编程语言 文本领域最成熟的应用暂时不在人类自然语言,而是在代码等机器语言的生成领域。因为机器语言相对更结构化,易学习;比如鲜有长文本的上下文关系、基于语境的不同含义等情况。 (1)代码生成:Github Copilot 代表公司是微软出品的 Github Copilot,编程中的副驾驶。该产品基于 OpenAI 专门用 GPT-3 为编程场景定制的AI模型 Codex。使用者文字输入代码逻辑,它能快速理解,根据海量开源代码生成造好的轮子供开发者使用。提高一家科技公司 10% 的 coding 效率能带来很大收益,微软内部已进行推广使用。 相比低代码工具,Copilot 的目标群体是代码工作者。未来的低代码可能是两者结合:低代码 UI 界面实现代码框架搭建,代码子模块通过 Copilot 自动生成。 正如 Copilot 的 slogan:Don’t fly solo,没有 Copilot 的帮助 coder 的工作会变得繁冗,没有 coder 的指引 Copilot 生成的内容可能会出现纰漏。也有用户报告了一些侵犯代码版权、或代码泄露的案例,当前技术进步快于版权法规产生了一定的空白。 (2)软件行为生成:Adept.ai Adept.ai 是一家明星创业公司。创始团队中有两人是Transformer 模型论文作者,CEO 是
谷
歌
大脑中大模型的技术负责人,已经获得 Greylock 等公司 6500 万美元的 A 轮融资。 他们的主要产品是大模型 ACT-1,让算法理解人类语言并使机器自动执行任务。目前产品形态是个 chrome 插件,用户输入一句话,能实现单击、输入、滚动屏幕行文。在展示 demo中,一位客服让浏览器中自动记录下与某位顾客的电话,正在考虑买 100 个产品。这个任务需要点击 10 次以上,但通过 ACT-1 一句话就能完成。 软件行为生成颠覆的是当下的人机交互形式,使用文字或语音的自然语言形式来代替当下人与机器的图形交互模式(GUI)。大模型成熟后,人们使用搜索引擎、生产力工具的方式都将变得截然不同。 2、自然语言 自然语言下还有多个应用型文本生成领域值得关注:新闻撰写、文案创作、对话机器人等。 (1)新闻撰写 最著名的是 Automated Inights。他们的结构化数据新闻撰写工具叫做 wordsmith,通过输入相应数据和优先级排序,能产出一篇基于数据的新闻报道。该工具已在为美联社每季度自动化产出 300 余篇财报相关报道,在雅虎体育新闻中也已经崭露头角。据分析师评价,由 AI 完成的新闻初稿已接近人类记者在 30 分钟内完成的报道水准。 Narrative Science是另一家新闻撰写生成公司,其创始人甚至曾预测,到 2030 年,90%以上的新闻将由机器人完成。 (2)文案创作 该领域竞争较为激烈,有copy.ai、Jasper、copysmith 等公司。他们基于 GPT-3 的能力加入了文案领域的人工模板与结构,为商家和个人创作者提供了快速为自己的商品、内容进行宣传的能力。以copysmith 为例: (3)对话机器人 前面提到的 Adept.ai 由Transformer 模型的一作和三作联合创立;而二作也创业了,他创办的 Character.ai 是当前对话机器人中使用效果最逼真的。 该对话机器人可以自定义或使用模板来定义角色的家庭、职业、年龄等,在此基础上保持一贯的设定和符合设定的对话风格。经常能体现出一定的共情对话能力带给人惊喜,并且支持多语言互通。 比如他们有已训练好的马斯克等名人和一些动漫角色,与他们对话会有很棒的代入感。 而商业化的对话机器人,在客服、销售等行业有巨大的市场空间,但如今还为成熟。 主要出现的问题有二: 其一,客服、销售行业遇到的客户往往情绪状态不稳定,AI 难以对情绪进行适应并调整对话内容; 其二,AI 的多轮对话能力较弱,无法保证持续有效的跟进问题。 (4)创作性文本 AI 对于长文本创作有一定困难,难以保持1000字以上的文本创作后仍能进行上下文的联系。 但基于短文本创作仍有一些有趣的应用,例如基于GPT-3的 AI Dungeon,可以引导 AI 创造一个虚拟游戏世界观。该领域进一步的成长需要期待未来 3-5 年,有成熟的能产出千字内容的 AI 出现。 3、多模态图片 DALL·E2 是极具突破性的 AIGC 大模型,但距离丰富生产力和创造力的成熟产品还有差距。因此有研究者顺着 DALL·E 和 CLIP 的思路开发了开源版本的扩散模型,就像当年的 Hugging Face 那样,并将其根据创作者社区的反馈转变为更成熟易用的商业产品。接下来就介绍几个主要出圈的模型: (1)Disco Diffusion 最早出圈的 AI 绘图工具是开源模型Disco Diffusion。发布时间比 DALL·E 2 稍晚,同样也是 CLIP + Diffusion Model 的结构,生成效果让许多插画师担心起了失业。 尽管很多插画师和 AI 工具爱好者的推荐都认可了该工具的易用性和生成效果的出众,但其生成时间略长有待优化,可以认为是大家对图片生成大模型的初体验。 (2)MidJourney 该模型发布后不久,Disco Diffusion 的开发者 Somnai 加入了 MidJourney,和团队一起打造了一款产品化的 Disco Diffusion。 Midjourney 的创始人 David Holz 并不是以CV(计算机视觉)研究为主,更关注人机交互。产品公测和主要交流平台都基于Discord,使用 Discord Bot 进行交互,打造了相当良好的社区讨论环境。 使用中印象深刻的有几个重要功能:MidJourney 画廊中可以看到每时每刻创作者们用 MJ 创作出的作品,用户可以对作品进行打分,每周排名靠前的作品将得到额外的 fast GPU 时间奖励。 同时,MJ官方还为用户贴心的提供了引导语 prompt 集合和 AI 擅长的风格指南,指导用户如何最高效的生成出他们想要的图片。 基于良好的产品和社区体验,MidJourney 的付费用户量也是目前最大的。 目前收费模式采用了订阅制,个人用户有两个档位,每月最多 200 张图片(超额另收费)的 10 美元/月,以及”不限量“图片的 30 美元/月;对企业客户,单人一年收费仅有 600 美元,且生成的作品可以商用(当前法规尚不完善,仍可能存在一定版权问题)。 (3)Stable Diffusion 如果说 MidJourney 是一个勤勤恳恳的绩优生,那么 Stability.ai 则是天赋异禀技术力强、诞生之初就备受 VC 追捧的富二代,公司估值已达到十亿美元。产品 Stable Diffusion 首要目标是一个开源共创模型,与当年的 Hugging Face 神似。 创始人 Emad 之前是对冲基金经理,用自己充裕的资金联合 LMU 和 Runaway ML开发了开源的 Stable Diffusion,在 Twitter 上使用扎克伯格在 Oculus 发布会上的照片作为背景,号召SD会成为”人类图像知识的基础设施“,通过开源让所有人都能够使用和改进它,并让所有人更好地合作。 Stable Diffusion 可以认为是一个开源版本的DALL·E2,甚至不少使用者认为是当前生成模型可以使用的最佳选择。官方版本部署在官网 Dream Studio 上,开放给所有用户注册。 相比其他模型,有很多可以定制化的点。不过官网只有 200 张免费额度,超过需要付费使用,也可以自行使用开源 Colab 代码版无限次使用。此外,Stable Diffusion 在压缩模型容量,希望使该模型成为唯一能在本地而非云端部署使用的 AIGC 大模型。 05 AIGC大模型的未来展望 1、应用层:多模态内容生成更加智能,深入各行业应用场景 上述的多模态图片生成产品当前主要局限于创作画作的草图和提供灵感。在未来待版权问题完备后, AIGC 内容能进入商用后,必然会更深入地与业界的实际应用进行结合: 以游戏行业为例, AI 作画给了非美术专业工作者,如游戏策划快速通过视觉图像表达自己需求和想法的机会;而对美术画师来说,它能够在前期协助更高效、直接地尝试灵感方案草图,在后期节省画面细节补全等人力。 此外,在影视动画行业、视频特效领域,甚至是文物修复专业,AI 图片生成的能力都有很大想象空间。当然,这个领域 AI 的能力也有着不小的进步空间,在下面的未来展望部分进行阐发。 目前 AIGC 存在 Prompt Engineering 的现象,即输入某一些魔法词后生成效果更好。这是目前大模型对文本理解的一些缺陷,被用户通过反向工程进行优化的结果。未来随着语言模型和多模态匹配的不断优化,不会是常态,但中短期内预期Prompt Engineering 还是得到好的生成内容的必备流程之一。 2、模态层:3D生成、视频生成 AIGC 未来3-5年内有明显进步 多模态(multimodal)指不同信息媒介之间的转换。 当前 AI 作图过程中暴露的问题会成为视频生成模型的阿喀琉斯之踵。 例如:AI 作画的空间感和物理规则往往是缺失的,镜面反射、透视这类视觉规则时常有所扭曲;AI 对同一实体的刻画缺少连续性。根本原因可能是目前深度学习还难以基于样本实现一些客观规则泛化,需要等待模型结构的优化进行更新。 3D生成领域也有很大价值:3D 图纸草图、影视行业模拟运镜、体育赛场现场还原,都是 3D 内容生成的用武之地。这一技术突破也渐渐成为可能。 2020年,神经辐射场(NeRF)模型发布,可以很好的完成三维重建任务:一个场景下的不同视角图像提供给模型作为输入,然后优化 NeRF 以恢复该特定场景的几何形状。 基于该技术,
谷
歌
在2022年发布了 Dream Fusion 模型,能根据一段话生成 360 度三维图片。这一领域当前的实现效果还有优化空间,预期在未来3-5年内会取得突破性进展,推动视频生成的进步。 3、模型层:大模型参数规模将逼近人脑神经元数量 近年的大模型并未对技术框架做颠覆性创新,文本和图像生成领域在大模型出现前,已有较成熟方案。但大模型以量变产生质变。 从神经网络角度看,大脑有约 100 万亿神经元, GPT-3 有 1750 亿参数,还相差了 1000 倍的数量级,随着算力进步可以发展的空间还很大。 神经网络本质是对高维数据进行复杂的非线性组合,从而逼近所观测数据分布的最优解,未来一定会有更强的算力、更精妙的参数堆叠结构,来刷新人们对AI生成能力的认知。 4、成本结构决定大模型市场的马太效应 大模型最直接的成本便是能源成本(energy cost),GPT-3 发布时的训练成本在千万美元级别。难以在短期内衡量 ROI ,大科技公司才能训练大模型。 但随着近年模型压缩、硬件应用的进步,GPT-3 量级的模型成本很可能已降至百万美元量级,Stable Diffusion 作为一个刚发布一个月的产品,已经把原本 7GB 的预训练模型优化压缩至 2GB 左右。 在这样的背景下,算力成本在未来必然会逐渐变得更合理,但 AIGC 领域的另一个成本项让笔者对市场结构的预测还是寡头垄断式的。 大模型有明显的先发优势,来自巨大的隐形成本:智能成本。前期快速积累用户反馈数据能帮助模型持续追新优化,甩开后发的竞争者,达到模型性能的规模效应。 AI 的进化来自于数据的积累和充分吸收。深度学习,乃至当前的所有机器学习都是基于历史预估未来,基于已有的数据给到最接近真实的可能。 正如前文讨论的,OpenAI 的目标从来不是留恋于某个局部行业的商业产品,而是通过模型规模经济,不断地降低人类社会全局的智能成本,逼近通用人工智能 AGI。规模经济正体现在智能成本上。 5、虚拟世界的 AGI 会先于现实世界诞生 从更宏观的视角上,虚拟世界 AI 技术的智能成本比现实世界中来得低得多。现实里 AI 应用最普遍的是无人驾驶、机器人等场景,都对 Corner Case 要求极高。 对于AI模型而言,一件事超过他们的经验范畴(统计上out of distribution),模型将立马化身人工智障,不具备推演能力。现实世界中 corner case 带来的生命威胁、商业资损,造成数据积累过程中极大的试错成本。 虚拟世界则不同,绘图时遇到错位扭曲的图片,大家会在 Discord 中交流一笑了之;游戏 AI 产生奇怪行为,还可能被玩家开发出搞怪玩法、造成病毒传播。 因此虚拟世界,尤其是泛娱乐场景下的 AIGC 积累数据成本低会成为优势。这个领域的 AI 如果节省人力、生成内容产生的商业价值能大于算力成本,能很顺畅地形成低成本的正向循环。 伴随着另一个重要的革新——长期 Web3.0元宇宙场景下新内容经济生态的形成,虚拟世界内容场景下的 AI 很可能更早触及到 AGI。 来源:金色财经
lg
...
金色财经
2023-02-21
上一页
1
•••
702
703
704
705
706
•••
813
下一页
24小时热点
特朗普离全面关税更近一步:小心市场风向突变!法国政府传垮台危机,今日久等PCE
lg
...
PCE“大爆表”!美联储首选通胀指标10月份仍处于高位,金价急跌近10美元
lg
...
特朗普阵营突传将与中国会面!日媒:谈判减少伊朗石油购买 解决中东与俄乌冲突
lg
...
2.8%!美国经济表现出令人惊讶的韧性,第三季度GDP修正值持平于初值
lg
...
决定黄金命运的时刻来了!小心美国PCE数据让金价突然“大变脸” 高级分析师金价技术分析
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
14讨论
#链上风云#
lg
...
47讨论
#美国大选#
lg
...
1329讨论
#VIP会员尊享#
lg
...
1514讨论
#比特币最新消息#
lg
...
626讨论