全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
财富汇
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
首批Azure
OpenAI
服务落地万科 大模型商业化进程持续加速
go
lg
...
据媒体报道,Azure
OpenAI
嵌入到万科风险预警平台后,可利用GPT-3模型从大量舆情、投诉、突发事件数据中提取特征并进行预警,经对比测试,Azure
OpenAI
嵌入万科预警平台后,基于GPT-3模型的自定义训练,契合了地产行业的特点,使投诉数据标签准确率相较此前又提升了5个百分点,达到业界领先水平。 整个人工智能、云计算领域乃至互联网行业,都意识到了ChatGPT的强大。微软Azure是
OpenAI
独家云服务提供商,依托微软Azure云平台强大的算力支持,以及Azure
OpenAI
宇宙最强的自然语言处理能力,帮助企业更好地实现数据管理,切实提升生产力。分析师表示,伴随着
OpenAI
技术与微软业务融合不断加深,大模型商业化落地进度有望加速。数字化浪潮席卷了时代的每一个人。万科与Azure
OpenAI
的合作只是一个开始,伴随着
openAI
技术与微软自身业务融合不断加深,更多AI功能嵌入到微软全线业务,GPT系列语言大模型的商业化落地进度有望持续加速,带动上下游生态快速成长丰富。 世纪华通(002602)近年来在上海、深圳等地相继投建了大型数据中心,打造算力底座的同时,开展数据安全、绿色能源等增值服务。 首都在线(300846)推出的“云算力解决方案”为AIGC场景提供了云端算力基础设施,形成了具备行业优势的弹性计算、全球网络、IDC服务、数据处理和安全等在内的云网一体化产品和服务。
lg
...
金融界
2023-02-22
科技专家:这场AI赛跑中,谷歌的脆弱性为什么开始显现?
go
lg
...
严厉批评。 微软(MSFT)则是将
OpenAI
整合到其Bing网络浏览器中,尽管也受到了一定的批评,发布时还是提振了微软的股票。 Winton表示:"谷歌的整个业务结构都围绕着这样一个想法:人们去一个网站,然后再跳转到另一个网站,以获得他们的答案。" "脆弱的"模式 展望未来,Winton认为搜索引擎之间的正面竞争中,不一定会有一个一定会胜出的股票策略。 他说:"我认为谷歌的模式是脆弱的,但它不一定对微软有利。" 相反,Winton认为谷歌可以通过对人工智能的大规模投资来保护它的其他产品,并可能将业务推向NVidia(NVDA),后者是其云服务的合作伙伴。 他还考虑了微软推出人工智能搜索引擎的策略,将其作为为其办公软件授权收集数据的一种手段。 "目前清楚的一点是,将有大量资金用于人工智能投资,"Winton表示。并补充说,任何一家科技巨头处于有利地位的关键是通过在其软件中提供人工智能的能力。" 他解释说:"在早期互联网时代,赢家不是我们今天认为的亚马逊(AMZN)和面向消费者的互联网公司,而是像Cisco(CSCO)这样的公司。" Winton还表示,在互联网诞生之初,像Cisco这样的互联网公司为用户提供了上网的基础设施。目前他认为,为聊天机器人提供基础设施的芯片制造商将会占上风。 "私有的公司,如MosaicML,主要业务是让企业为自己建立这些人工智能模型,"Winton说。"这些公司真的很有趣,我认为谷歌非常脆弱。"
lg
...
金融界
2023-02-22
马斯克再次批评ChatGPT存在严重偏见:这是一个重大问题
go
lg
...
cks)的一段视频,后者在视频中分析了
OpenAI
旗下人工智能聊天机器人ChatGPT的“安全层”(security layer),指出其存在严重偏见。 萨克斯说:“越来越多的证据表明,
OpenAI
的安全层非常有偏见……如果你认为Vijaya或Yoel领导下的信任和安全很糟糕,那就等着人工智能来做吧。”这似乎是指推特前法务主管Vijaya Gadde和前信任与安全主管Yoel Roth做出的有争议的内容决定。 马斯克对此回应称,这是一个“重大问题”。 此前一天,马斯克对一条有关他被ChatGPT标记为“争议人物”的推文进行了回应,用两个惊叹号表达了自己的震惊和不满。 这不是马斯克第一次对ChatGPT(或其背后的工程师)可能表现的政治偏见表示担忧。 本月初,有推特网友称,ChatGPT对一个有关美国总统拜登和他的前任特朗普的类似问题,作出了截然不同的反应,并指出“ChatGPT工程师基于政治偏见对人工智能的可信度造成的损害是无法弥补的。” 马斯克当时回应称,这令人“严重关切”。
lg
...
金融界
2023-02-22
中国算力“卖水者”望成AI时代基站网络!中国电信布局ChatGPT引发股价暴涨,运营商链受益上市公司梳理
go
lg
...
运行、储存、交互AI数据的重要基建。如
OpenAI
与ChatGPT就运行于微软的Azure公有云之上。 浙商证券张建民研报中表示,2022-2026,中国公有云市场会以复合增长率30.9%继续高速增长,预计到2026年,市场规模将达到1057.7亿美元。中泰证券陈宁玉等研报中预测,2025年中国移动和中国电信的云计算业务收入有望突破1000亿,中国联通云计算业务有望超过600亿。 陈宁玉表示,算力网络资本开支主要包括业务网、IT云、数据中心的直接投资及传输网、汇聚机房部分分摊投资,从传统统计口径来看,传输网及业务支撑网占比显著提升。重点关注与运营商在该领域合作较为深度的供应商结构性增长机会,数据中心服务商:润泽科技、宝信软件等。 网络设备商:中兴通讯、紫光股份、锐捷网络等;数据中心暖通设备:英维克、佳力图、依米康等;光纤光缆:长飞光纤、亨通光电、中天科技等。此外,运营商数据链包括,中新赛克、浩瀚深度、恒为科技、东方国信、天源迪科。 具体来看,中兴通讯服务于全球电信运营商、政企客户和消费者,公司业务覆盖 160 多个国家和地区,服务全球 1/4 以上人口。 锐捷网络在中国以太网交换机市场份额排名第三、Wi-Fi6产品出货量排名第一、中国企业级终端VDI市场份额排名第一、中国本地计算IDV云桌面市场占有率第一。 中新赛克在网络内容安全领域,公司升级网络态势分析系统,研发疫情通行大数据分析系统、运营商网络流量质量监测系统,并得到规模部署。 浩瀚深度是国内领先的互联网流量智能化方案提供商,产品供应国内三大运营商,与中国移动保持长期合作关系。DPI系统在处理性能、设备集成度、设备能耗比等方面均处于国内领先水平。
lg
...
金融界
2023-02-21
Chat GPT未来技术互联网发展缩影 | Web3
go
lg
...
通俗易懂和大家分享。 ChatGPT是
OpenAI
公司开发的一种大型语言模型,其名字中的“GPT”是“Generative Pre-trained Transformer”的缩写。它是一种自然语言处理(NLP)模型,可以实现许多不同的文本生成和自然语言理解任务,例如文本摘要、自动翻译和情感分析等。 ChatGPT是基于Transformer模型的,Transformer模型是一种深度学习模型,可以学习文本中的长期依赖关系。这使得ChatGPT可以生成连贯、准确的文本,并理解上下文中的复杂关系。它的架构是由多个Transformer块组成的,每个块都有一个自注意力机制,用于捕捉输入文本中不同部分之间的依赖关系。 ChatGPT具有许多强大的功能,以下是一些常见的用例: 文本生成 ChatGPT可以生成几乎任何类型的文本,例如对话、故事、诗歌等。只需提供一些初始文本,ChatGPT就可以自动生成与之相似的内容。这使得ChatGPT在聊天机器人和自动作家等领域具有广泛的应用。 文本分类 ChatGPT可以将文本分类为预定义的类别,例如情感分析或垃圾邮件过滤。它可以学习不同类别之间的差异,并将新的文本分配给最有可能的类别之一。 问答系统 ChatGPT可以根据提供的问题和上下文,回答用户的问题。它可以理解问题的含义并从相关文本中提取答案。这使得ChatGPT在虚拟助手和搜索引擎中具有广泛的应用。 文本摘要 ChatGPT可以生成输入文本的简洁摘要,使用户能够更快地了解文本的内容。它可以自动识别重要信息,并生成一个简洁的概括。 自动翻译 ChatGPT可以将一种语言翻译成另一种语言。它可以学习两种语言之间的映射,并自动翻译输入文本。 ChatGPT的训练需要大量的计算资源和大量的数据。它使用无监督学习方法进行预训练,这意味着它可以使用大量未标记的文本数据进行训练。在预训练阶段,ChatGPT学习了大量的文本,从而使其能够生成更加准确和连贯的文本。然后,它可以使用有标记的数据进行微调,以适应不同的任务。 ChatGPT也有一些限制,如情感,情绪,所以可不是今年才有哦,Chat GPT是有1.0、2.0、3.0阶段 影响 Chat GPT作为一种强大的自然语言处理模型,已经在互联网和数字加密行业产生了重大影响。 在互联网方面,Chat GPT可以用于创建更智能、更人性化的聊天机器人。这些聊天机器人可以在网站和应用程序中使用,使客户能够与公司进行更加自然和流畅的交互。Chat GPT还可以用于文本生成任务,如自动生成新闻、文章和故事。这可以节省时间和成本,从而为新闻出版商和写作人员带来更高的效率。 在数字加密行业方面,Chat GPT的影响正在不断增强。它可以用于加密货币交易的自动化,并提高交易效率。例如,Chat GPT可以分析市场数据并生成预测,以帮助交易员做出更明智的决策。Chat GPT也可以用于加密货币钱包的安全性。它可以检测恶意软件和非法交易,并提供更好的安全性和保护。 除此之外,Chat GPT还可以用于处理自然语言的难题,例如文本翻译和文本摘要。这些都是在数字加密行业中非常重要的任务,因为它们能够提高交易员和分析师的效率,从而减少错误和提高利润。 然而,Chat GPT的使用也存在一些挑战和限制。首先,它需要大量的计算资源和大量的数据进行训练,这使得其在实际应用中可能会面临一些限制。其次,Chat GPT可能会受到操纵和误导,因为它并不总是能够理解文本中的含义,而是通过学习模式来生成文本。因此,对于使用Chat GPT的应用程序和系统,需要进行仔细的审核和测试,以确保其准确性和可靠性。 总之,Chat GPT在互联网和数字加密行业中的影响将会越来越重要,它将会在这些领域中扮演重要的角色,从而带来更高的效率和更好的结果。 来源:金色财经
lg
...
金色财经
2023-02-21
AI绘画对画师有多大的影响
go
lg
...
过各种文本提示工程以生成各种图像。包括
OpenAI
的DALL-E、 谷歌大脑的Imagen和Parti(2022年5月发布)以及微软的NUWA-Infinity。输入形式还可以包括图像和关键字和/或配置参数,通常通过关键短语输入艺术风格,仅仅通过短短几分钟甚至几十秒Ai就可以输出几张高质量的图片。毫无疑问,Ai图像生成技术很大促进了绘画圈的竞争力,但是同样的Ai绘画似乎也在挤压着初,中阶段画师的生存空间。也在某种意义上磨灭着现实中画手的创作热情 但是在现有技术手段中,Ai没有真正的原创能力,无法做到创新的制作,所以现实中创作的画手们也有着Ai无法替代的方面,虽然未来的画师行业会受到Ai技术的冲击,但是那些不断提升并且有着丰富创造性的画师仍旧不可替代,任何一个人的思维与想法都无法被数字所取代。 来源:金色财经
lg
...
金色财经
2023-02-21
“AI+Web3” 概念最新融资项目盘点
go
lg
...
AI 的“军备竞赛”。微软重金砸向
OpenAI
,谷歌发布企业级紧急预警,应对性推出了自己搜索型聊天机器人巴德(Bard),更有 Databricks、Cruise、Grammarly 等一众AI概念企业估值超过百亿美元,并引发了从软件到底层算法,以及硬件芯片等多个层面的竞争,可以说2023的开年就充斥着一股“火药味”。 而 AI 的百搭性,给它绘制了一幅更为宏大的应用场景,与生物技术、计算机视觉、语言处理、Web3、物流、农业科技等方面的结合,能展示出了一种科幻般的畅想。据普华永道的估计,未来在 AI 的推动下,到2030年,AI 将为世界经济贡献15.7万亿美元,累计推动全球GDP增长14%。本文主要关注 AI+Web3 领域,从2023年最新的融资项目中寻找这一概念的项目,助你寻找 Alpha。 Botto 投资机构:Variant Fund 融资金额:未公开 Botto 是一个通过 DAO 治理的生成艺术社区。Botto 引擎使用了 Stable Diffusion、VQGAN + CLIP、GPT-3 等多种模型,根据文本生成艺术图像,每周,会根据社区不同艺术倾向、审美风格等要素,预选出350张图像呈现给社区进行投票,将最受欢迎的图像铸造为 NFT,并最终在 SuperRare 上进行拍卖,以此获得收入并对 Botto 引擎进行训练。目前,参与社区的治理需要一定的 Token 或者 Pass 卡。 从本质上来看,Botto 是 AI 生成艺术NFT与 DAO 治理的结合体,杂糅了AI的概念,也融合了NFT、DAO和代币经济学等方面的内容,能否维持社区长久且稳定运营也其考验着治理者的智慧。 Mawari 投资机构:Blockchange Ventures、Decasonic、Accord Ventures、Abies Ventures等 融资金额:650万美元/种子轮 目前,Mawari 正在构建名为 Mawari Network 的产品:一个基于 Web3 原则设计的去中心化 3D 和 XR 内容交付平台,也是一个分布式内容交付和收益共享网络。旨在通过压缩、AI机器学习和区块链等技术满足实时3D渲染和流媒体传输拥堵等问题,以实现 3D 元宇宙并进一步扩展至XR设备中,希望将 Mawari 打造成为元宇宙中的 Akamai(全球知名的内容交付网络服务提供商)。 就其发展愿景来说可以说非常宏大,所面临的技术难度同样也不小,不过,由于项目官网所展示的信息极其有限,如果想要对项目进行更全面的评估,需要等待项目方公布更多的信息。 Addressable 投资机构:Viola Ventures、Fabric Ventures、Mensch Capital、NorthIslandVC 融资金额:750万美元/种子轮 Addressable 是一家Web3营销公司,帮助 Web3 营销人员从社交媒体账户和钱包中收集数据,并根据相似性匹配信息,以构建更准确的目标受众画像。鉴于当前区块链上行为的匿名性,Addressable 将匿名区块链受众与对应的社交媒体联系起来,解决当今 Web3 增长的难题,它提供了一个 SaaS 平台,使得 Web3 营销人员提可以向他们的受众传达信息。目前,Addressable仅跟踪 Ethereum 上的用户数据,Web2平台也主要是Twitter,产品还处于Demo阶段。 Plai Labs 投资机构:a16z 融资金额:3200万美元 种子轮 Plai Labs 的定位是 Web3 和 AI 社交平台。两位创始人 Chris DeWolfe 与 Aber Whitcomb 曾是社交媒体平台 MySpace 和游戏工作室 Jam City 的创始人,都是连续创业者,他们计划通过 AI 和 web3 来构建下一代社交平台,供用户一起玩耍、交流、战斗、交易和冒险。 而 Champions Ascension 是由 Plai Labs 推出首款多人在线角色扮演游戏,游戏以马西纳的传说为蓝本,让玩家带着他们的宠物在元宇宙漫游参与活动,此外 Plai Labs 还在构建一个AI协议平台,该平台将帮助处理从用户生成内容(UGC)到匹配到2D到3D资产渲染的所有内容。 Trusta labs 投资机构:SevenX Ventures、Vision Plus、HashKey等 融资金额:300万美元+ Trusta labs 是一家链上数据分析公司,其核心产品为 TrustScan,弥合链上原始数据与洞察DID声誉特征的需求之间的差距,通过 AI 技术为引擎,为 DI D主体在Web3世界的声誉提供深度分析和评估,涵盖女巫攻击、欺诈风险、信用评分等。根据其官网披露,目前 TrustScan 已经检测出了超过100万的女巫地址。 Creatora 投资机构:a16z 融资金额:1000万 A轮 Creatora 是一个面向创作者的元宇宙项目,拥有一个用户生成内容 (UGC) 的元宇宙引擎,创作者能够创建、分发和将游戏元宇宙化。 任何创作都可以货币化,它模糊创作者和消费者之间的界限,创造一个一切皆可 MetaFi 的元宇宙空间。 据其官方透露,Createra 在亚洲积累了近1500万的Z世代用户、50 万创作者,其发展重心也主要以 Z 世代为主,而在项目中,Genesis land 是主要的核心资产,它将决定后续奖励/资产的分配以及在Createra的曝光机会。 Sortium 投资机构:Arca 融资金额:775 万美元/种子轮 Sortium 是一家结合了 AI 和 Web3 的娱乐科技公司。Sortium 专注于技术框架的构建,以帮助客户了解生成式AI系统、区块链和动态经济系统等,并在实现应用场景的使用,Sortium 推出了名为 CosmoGene 的P2E游戏,CosmoGene 游戏中,通过AI支持的虚拟DNA,玩家可以根据基因创造独特的体验。 通过上文描述来看,AI+Web3 的初创项目大多是弱 AI 项目,应用结合的深度并不高,此外,应用场景也主要集中在游戏、NFT以及链上数据分析等几个核心领域,我们以期待 Web3 能与 AI 有更加深度的结合,诸如出现智能协议、智能 DApp 甚至于智能区块链等。 来源:金色财经
lg
...
金色财经
2023-02-21
人工智能时代的算力挑战
go
lg
...
最近,
OpenAI
推出的聊天机器人ChatGPT真可谓是红到发紫。无论是做技术的、做投资的,还是普通网友,好像不聊几句ChatGPT就显得落伍了。当然,在一片对ChatGPT的追捧当中,也有一些不同的意见。比如,图灵奖得主、Meta的首席AI科学家杨立昆(Yann LeCun)就在社交媒体上发帖说:从底层技术看,ChatGPT并没有什么创新。与其说它是一次巨大的技术革新,倒不如说它是一个工程上的杰作。 杨立昆的这番言论一出,就遭遇到了网友的一片嘲讽,很多人甚至毫不客气地说,作为Meta的AI掌门人,这完全就是一种“吃不到葡萄说葡萄酸”的狡辩。由于Meta先前在同类产品上的失败经历,所以面对如此汹汹的舆论,杨立昆也是百口莫辩,只能就此噤声,不再对ChatGPT进一步发表评论。 不过,如果我们认真回味一下杨立昆的话,就会发现他的话其实是非常有道理的:虽然从表现上看,现在的ChatGPT确实非常惊艳,但从根本上讲,它依然是深度学习技术的一个小拓展。事实上,与之类似的产品在几年前已经出现过,所不同的是,ChatGPT在参数数量上要远远多于之前的产品,其使用的训练样本也要大得多。而它卓越的性能,其实在很大程度上只是这些数量优势积累到了一定程度之后产生的质变。 有意思的是,如果我们回顾一下深度学习的历史,就会发现这种利用神经网络进行机器学习的思路其实在上世纪50年代就有了,可以称得上是人工智能领域最古老的理论之一。早在1958年,罗森布拉特就曾经用这个原理制造了一台机器来识别字符。然而,在很长的一段时间内,这个理论却一直无人问津,即使现在被尊为“深度学习之父”的杰弗里·辛顿(Geoffrey Hinton)也长期遭受孤立和排挤。究其原因,固然有来自当时在人工智能领域占主导地位的“符号主义”的打压,但更为重要的是,当时的深度学习模型确实表现不佳。 直到本世纪初,这一切才发生了改变。长期蛰伏的深度学习理论终于翻身成为了人工智能的主流,一个个基于这一理论开发的模型如雨后春笋一般出现。从打败围棋高手的AlphaGo到识别出几亿种蛋白质结构的AlphaFold,从可以瞬间生成大师画作的Dall-E、Stable Diffusion到当今如日中天的ChatGPT,所有的这些在短短的几年之间涌现了。 那么,到底是什么原因让深度学习在过去的几年中扭转了长期的颓势,让它得以完成了从异端到主流的转换?我想,最为关键的一点就是算力的突破。 算力及其经济效应 所谓算力,就是设备处理数据、输出结果的能力,或者简而言之,就是计算的能力。它的基本单位是用“每秒完成的标准操作数量”(standardized operations per second,简称SOPS)来进行衡量。不过,由于现在的设备性能都非常高,因而在实践中用SOPS来衡量算力已经变得不那么方便。相比之下,“每秒完成的百万次操作数”(million operations per second,简称MOPS)、“每秒完成的十亿次操作数”(giga operations per second,简称GOPS),以及“每秒完成的万亿次操作数”(tera operations per second,简称TOPS)等单位变得更为常用。当然,在一些文献中,也会使用某些特定性能的设备在某一时间段内完成的计算量来作为算力的单位——其逻辑有点类似于物理学中用到的“马力”。比如,一个比较常用的单位叫做“算力当量”,它就被定义为一台每秒运算千万亿次的计算机完整运行一天所实现的算力总量。 那么,算力的意义究竟何在呢?关于这个问题,阿格拉沃尔(Ajay Agrawal)、甘斯(Joshua Gans)和戈德法布(Avi Goldfarb)在他们合著的《预测机器》(Prediction Machines,中文译名为《AI极简经济学》)中,曾经提出过一个有启发的观点:算力的成本将关系到AI模型的“价格”。经济学的原理告诉我们,在给定其他条件的前提下,人们对一种商品的需求量取决于该商品的价格。而对于两种性能相近,具有替代关系的商品来说,具有更低价格的那种商品会在市场上具有更高的竞争力。将这一点应用到人工智能领域,我们就可以找到深度学习理论为什么在几十年中都不被待见,却在最近几年中实现爆发的原因。 虽然深度学习的理论并不算困难,但是为了实现它,要投入的运算量是十分巨大的。在算力低下的时代,算力的单位成本非常高。在罗森布拉特提出深度学习思想雏形的那个年代,一台计算机的体积几乎和一间房子那么大,但即便如此,让它运算一个大一点的矩阵都还需要很长时间。虽然理论上我们也可以用深度学习来训练大模型并达到比较好的效果,但这样的成本显然是没有人能够承受的。而相比之下,符号学派的模型对于计算量的要求要小得多,因此这些模型的相对价格也要比深度学习模型来得低。在这种情况下,深度学习理论当然不会在市场上有竞争力。但是,当算力成本大幅度降低之后,深度学习模型的相对价格就降了下来,它的竞争力也就提升了。从这个角度看,深度学习在现阶段的胜利其实并不是一个纯粹的技术事件,在很大程度上,它还是一个经济事件。 改进算力的方法 那么,决定算力的因素有哪些呢? 为了直观起见,我们不妨以计算数学题来对此进行说明:如果我们要提高在单位时间内计算数学题的效率,有哪些方法可以达到这一目的呢?我想,可能有以下几种方法是可行的:一是找更多人一起来计算。如果一个人一分钟可以算一个题,那么十个人一分钟就可以算十个题。这样,即使每个人的效率没有提升,随着人数的增加,单位时间内可以计算的数学题数量也可以成倍增加。二是改进设备。比如,最早时,我们完全是依靠手算的,效率就很低。如果改用计算器,效率会高一点。如果使用了Excel,效率就可能更高。三是将问题转化,用更好的方法来计算。比如,计算从1加到100,如果按照顺序一个个把数字加上去,那么可能要算很久。但是,如果我们像高斯那样用等差数列求和公式来解这个问题,那么很快就可以计算出结果。 将以上三个方案对应到提升算力问题,我们也可以找到类似的三种方法:一是借助高性能计算和分布式计算;二是实现计算模式上的突破;三是改进算法——尽管严格地说这并不能让算力本身得到提升,但是它却能让同样的算力完成更多的计算,从某个角度看,这就好像让算力增加了一样。 1、高性能计算和分布式计算 从根本上讲,高性能计算和分布式计算都是通过同时动用更多的计算资源去完成计算任务,就好像我们前面讲的,用更多的人手去算数学题一样。所不同的是,前者聚集的计算资源一般是聚集在本地的,而后者动用的计算资源则可能是分散在网上的。 (1)高性能计算 先看高性能计算。高性能计算中,最为重要的核心技术是并行计算(Parallel Computing)。所谓并行计算,是相对于串行计算而言的。在串行计算当中,计算任务不会被拆分,一个任务的执行会固定占有一块计算资源。而在并行计算中,任务则会被分解并交给多个计算资源进行处理。打个比方,串行计算过程就像是让一个人独立按照顺序完成一张试卷,而并行计算则像是把试卷上的题分配给很多人同时作答。显然,这种任务的分解和分配可以是多样的:既可以是把计算任务分给多个设备,让它们协同求解,也可以是把被求解的问题分解成若干个部分,各部分均由一个独立的设备来并行计算。并行计算系统既可以是含有多个处理器的超级计算机,也可以是以某种方式互连的若干台独立计算机构成的集群。 从架构上看,并行计算可以分为同构并行计算(homogeneous parallel computing)和异构并行计算(heterogeneous parallel computing)。顾名思义,同构并行计算是把计算任务分配给一系列相同的计算单元;异构并行计算则是把计算任务分配给不同制程架构、不同指令集、不同功能的计算单元。比如,多核CPU的并行运算就属于同构并行,而CPU+GPU的架构就属于异构并行。 对比于同构并行,异构并行具有很多的优势。用通俗的语言解释,这种优势来自于各种计算单元之间的“术业专攻”,在异构架构之下,不同计算单元之间的优势可以得到更好的互补。正是由于这个原因,异构并行计算正得到越来越多的重视。 比如,现在越来越多的设备当中,都采用了将GPU和CPU混搭的架构。为什么要这么做呢?为了说明白这一点,我们需要略微介绍一下CPU和GPU的结构:从总体上看,无论是CPU还是GPU,都包括运算器(Arithmetic and Logic Unit,简称ALU)、控制单元(Control Unit,简称CL)、高速缓存器(Cache)和动态随机存取存储器(DRAM)。但是,这些成分在两者中的构成比例却是不同的。 在CPU当中,控制单元和存储单元占的比例很大,而作为计算单位的ALU比例则很小,数量也不多;而在GPU当中则正好相反,它的ALU比例很大,而控制单元和存储单元则只占很小的一个比例。这种结构上的差异就决定了CPU和GPU功能上的区别。CPU在控制和存储的能力上比较强,就能进行比较复杂的计算,不过它可以同时执行的线程很少。而GPU则相反,大量的计算单位让它可以同时执行多线程的任务,但每一个任务都比较简单。打个比喻,CPU是一个精通数学的博士,微积分、线性代数样样都会,但尽管如此,让他做一万道四则运算也很难;而GPU呢,则是一群只会四则运算的小学生,虽然他们不会微积分和线性代数,但人多力量大,如果一起开干,一万道四则运算分分钟就能搞定。 由于GPU的以上性质,它最初的用途是作为显卡,因为显卡负责图形和色彩的变换,需要的计算量很大,但每一个计算的复杂性都不高。当深度学习兴起之后,人工智能专家们发现GPU其实也很适合用来训练神经网络模型。因为在深度学习模型中,最主要的运算就是矩阵运算和卷积,而这些运算从根本上都可以分解为简单的加法和乘法。这样一来,GPU就找到了新的“就业”空间,开始被广泛地应用于人工智能。但是,GPU并不能单独执行任务,所以它必须搭配上一个CPU,这样的组合就可以完成很多复杂的任务。这就好像让一个能把握方向的导师带着很多肯卖力的学生,可以干出很多科研成果一样。正是在这种情况下,异构并行开始成为了高性能计算的流行架构模式。 不过,异构架构也是有代价的。相对于同构架构,它对于应用者的编程要求更高。换言之,只有当使用者可以更好地把握好不同计算单元之间的属性,并进行有针对性的编程,才可能更好地利用好它们。 除此之外,我们还必须认识到,哪怕是借助异构架构,通过并行运算来提升运算效率的可能也是有限的。根据阿姆达尔定律(Amdahl’s Law),对于给定的运算量,当并行计算的线程趋向于无穷时,系统的加速比会趋向于一个上限,这个上限将是串行运算在总运算中所占比例的倒数。举例来说,如果在一个运算中,串行运算的比例是20%,那么无论我们在并行运算部分投入多少处理器,引入多少线程,其加速比也不会突破5。这就好像,如果我要写一本关于生成式AI的书,可以将一些资料查找的工作交给研究助手。显然,如果我有更多的研究助手,写书的进度也会加快。但这种加快不是无限的,因为最终这本书什么时候写完,还要看我自己“码字”的速度。 (2)分布式计算 采用聚集资源的方式来增强算力的另一种思路就是分布式计算。和高性能计算主要聚集本地计算单位不同,分布式计算则是将分散在不同物理区域的计算单位聚集起来,去共同完成某一计算任务。比如,刘慈欣在他的小说《球状闪电》中就提到过一个叫做SETI@home的科研计划(注:这个项目是真实存在的),这个计划试图将互联网上闲置的个人计算机算力集中起来处理天文数据,这就是一个典型的分布式计算用例。 分布式计算的一个典型代表就是我们现在经常听说的云计算。关于云计算的定义,目前的说法并不统一。一个比较有代表性的观点来自于美国国家标准和技术研究所(NIST),根据这种观点,“云计算是一种按使用量付费的模式。这种模式对可配置的IT资源(包括网络、服务器、存储、应用软件、服务)共享池提供了可用的、便捷的、按需供应的网络访问。在这些IT资源被提供的过程中,只需要投入很少的管理和交流工作”。 这个定义很抽象、很学院派,我们可以用一个通俗的比喻来对其进行理解。在传统上,用户主要是通过调用自有的单一IT资源,这就好比每家每户自己发电供自己用;而云计算则好像是(用大量算力设备)建了一个大型的“发电站”,然后将“电力”(IT资源)输出给所有用户来用。 根据云服务提供者所提供的IT资源的不同,可以产生不同的“云交付模式”(Cloud Delivery Model)。由于IT资源的种类很多,因此对应的“云交付模式”也就很多。在各类新闻报道中,最常见的“云交付模式”有三种: 第一种是IaaS,它的全称是“基础设施作为服务”(Infrastructure-as-a-Service)。在这种交付模式下,云服务的提供者供给的主要是存储、硬件、服务器和网络等基础设施。 第二种是PaaS,它的全称是“平台作为服务”(Platform-as-a-Service)。在这种交付模式下,云服务的提供者需要供应的资源更多,以便为使用者提供一个“就绪可用”(ready-to-use)的计算平台,以满足他们设计、开发、测试和部署应用程序的需要。 第三种是SaaS,也就是“软件作为服务”(Software-as-a-Service)。在这种交付模式下,云服务提供者将成品的软件作为产品来提供给用户,供其使用。 有了以上不同的云交付模式,用户就可以根据自己的需要来选择相应的IT资源。比如,如果元宇宙的用户需要更多的算力或存储,而本地的机器无法满足,那么就可以通过从云端来获取“外援”。一个云端GPU不够,那就再来几个,按需取用,丰俭由人,既方便,又不至于产生浪费。 需要指出的是,尽管从理论上看云计算可以很好地承担巨大运算和存储需求,但其缺陷也是很明显的。比较重要的一点是,在执行云计算时,有大量的数据要在本地和云端之间进行交换,这可能会造成明显的延迟。尤其是数据吞吐量过大时,这种延迟就更加严重。对于用户来说,这可能会对其使用体验产生非常负面的效果。 那么怎么才能克服这个问题呢?一个直观的思路就是,在靠近用户或设备一侧安放一个能够进行计算、存储和传输的平台。这个平台一方面可以在终端和云端之间承担起一个中介的作用,另一方面则可以对终端的各种要求作出实时的回应。这个思想,就是所谓的边缘计算。由于边缘平台靠近用户,因而其与用户的数据交换会更加及时,延迟问题就可以得到比较好的破解。 2、超越经典计算——以量子计算为例 无论是高性能计算还是分布式计算,其本质都是在运算资源的分配上下功夫。但正如我们前面看到的,通过这种思路来提升算力是有很多障碍的。因此,现在很多人希望从计算方式本身来进行突破,从而实现更高的计算效率。其中,量子计算就是最有代表性的例子。 我们知道,经典计算的基本单位是比特,比特的状态要么是0,要么是1,因此经典计算机中的所有问题都可以分解为对0和1的操作。一个比特的存储单元只能存储一个0或者一个1。而量子计算的基本单位则是量子比特,它的状态则可以是一个多维的向量,向量的每一个维度都可以表示一个状态。这样一来,量子存储器就比经典的存储器有很大的优势。 考虑一个有 N物理比特的存储器,如果它是经典存储器,那么它只能存储2的N次方个可能数据当中的任一个;而如果它是量子存储器,那么它就可以同时存储2的N次方个数据。随着 N的增加,量子存储器相对于经典存储器的存储能力就会出现指数级增长。例如,一个250量子比特的存储器可能存储的数就可以达到2的250次方个,比现有已知的宇宙中全部原子数目还要多。 在进行量子计算时,数学操作可以同时对存储器中全部的数据进行。这样一来,量子计算机在实施一次的运算中可以同时对2的N次方个输入数进行数学运算。其效果相当于经典计算机要重复实施2的N次方次操作,或者采用2的N次方个不同处理器实行并行操作。依靠这样的设定,就可以大幅度节省计算次数。 为了帮助大家理解,我们可以打一个并不是太恰当的比方:玩过动作游戏的朋友大多知道,在游戏中,我们扮演的英雄经常可以使用很多招数,有些招数只能是针对单一对象输出的;而另一些招数则可以针对全体敌人输出。这里,前一类的单体输出招数就相当于经典计算,而后一类的群体输出招数就相当于量子计算。我们知道,在面对大量小怪围攻的时候,一次群体输出产生的效果可以顶得上很多次单体输出的招数。同样的道理,在一些特定情况下,量子计算可以比经典计算实现非常大的效率提升。 举例来说,大数因式分解在破解公开密钥加密的过程中有十分重要的价值。如果用计算机,采用现在常用的Shor算法来对数N进行因式分解,其运算的时间将会随着N对应的二进制数的长度呈现指数级增长。1994年时,曾有人组织全球的1600个工作站对一个二进制长度为129的数字进行了因式分解。这项工作足足用了8个月才完成。然而,如果同样的问题换成用量子计算来解决,那么整个问题就可以在1秒之内解决。量子计算的威力由此可见一斑。 但是,在看到量子计算威力的同时,我们也必须认识到,至少到目前为止,量子计算的威力还只能体现对少数几种特殊问题的处理上,其通用性还比较弱。事实上,现在见诸报道的各种量子计算机也都只能执行专门算法,而不能执行通用计算。比如,谷歌和NASA联合开发的D-Wave就只能执行量子退火(Quantum Annealing)算法,而我国研发的光量子计算机“九章”则是专门被用来研究“高斯玻色取样”问题的。尽管它们在各自的专业领域表现十分优异,但都还不能用来解决通用问题。这就好像游戏中的群体攻击大招,虽然攻击范围广,但是对每个个体的杀伤力都比较弱。因此,如果遇上大群的小怪,群体攻击固然厉害,但如果遇上防御高、血条厚的Boss,这种攻击就派不上用处了。 从这个角度看,如果我们希望让量子计算大发神威,就必须先找出适合量子计算应用的问题和场景,然后再找到相应的算法。与此同时,我们也必须认识到,虽然量子计算的研发和探索十分重要,但是它和对其他技术路径的探索之间更应该是互补,而不是替代的关系。 3、通过改进算法节约算力 如果说,通过高性能计算、分布式计算,以及量子计算等手段来提升算力是“开源”,那么通过改进算法来节约算力就是“节流”。从提升计算效率、减少因计算而产生的经济、环境成本而言,开源和节流在某种程度上具有同等重要的价值。 在ChatGPT爆火之后,大模型开始越来越受到人们的青睐。由于在同等条件下,模型的参数越多、训练的数据越大,它的表现就越好,因此为了追求模型的更好表现,现在的模型正在变得越来越大。我们知道,现在的ChatGPT主要是在GPT-3.5的基础上训练的。在它出现之前,GPT共经历了三代。GPT-1的参数大约为1.17亿个,预训练数据为5GB,从现在看来并不算多;到了GPT-2,参数量就增加到了15亿个,预训练数据也达到了40GB;而到了GPT-3,参数量则已经迅速膨胀到了骇人的1750亿个,预训练数据也达到了45TB。为了训练GPT-3,单次成本就需要140万美元。尽管
OpenAI
并没有公布GPT-3.5的具体情况,但可以想象,它的参数量和预训练数据上都会比GPT-3更高。为了训练这个模型,微软专门组建了一个由1万个V100GPU组成的高性能网络集群,总算力消耗达到了3640“算力当量”——也就是说,如果用一台每秒计算一千万亿次的计算机来训练这个模型,那么大约需要近十年才能完成这个任务。 如果任由这种“一代更比一代大”的趋势持续下去,那么在未来几年,对算力的需求将会出现爆炸性的增长。一项最新的研究估计,在5年之后,AI模型需要的算力可能会是现在的100万倍。很显然,由此产生的经济和环境成本将会是十分惊人的。 令人欣慰的是,目前已经有不少研究者希望改进算法、优化模型来减少对算力的需求,并且已经取得了一定的成就。比如,就在今年1月3日,来自奥地利科学技术研究所 (ISTA)的研究人员埃利亚斯·弗朗塔(Elias Frantar)和丹·阿里斯特尔(Dan Alistarh)合作进行了一项研究,首次针对 100至 1000亿参数的模型规模,提出了精确的单次剪枝方法SparseGPT。SparseGPT可以将GPT系列模型单次剪枝到 50%的稀疏性,而无需任何重新训练。以目前最大的公开可用的GPT-175B模型为例,只需要使用单个GPU在几个小时内就能实现这种剪枝。不仅如此,SparseGPT还很准确,能将精度损失降到最小。在进行了类似的修剪之后,这些大模型在训练时所需要的计算量就会大幅减少,其对算力的需求也就会相应下降。 关于提升算力、支持人工智能发展的政策思考 随着ChatGPT引领了新一轮的人工智能热潮,市场上对算力的需求也会出现爆炸性的增长。在这种情况下,为了有力支撑人工智能的发展,就必须要通过政策的手段引导算力供给的大幅度增加。而要实现这一点,以下几方面的工作可能是最为值得重视的。 第一,应当加快对算力基础设施的建设和布局,提升对全社会算力需求的支持。如前所述,从目前看,分布式计算,尤其是其中的云计算是提升算力的一个有效之举。而要让云计算的效应充分发挥,就需要大力建设各类算力基础设施。唯有如此,才可以让人们随时随地都可以直接通过网络获得所需的算力资源。 这里需要指出的是,在布局算力基础设施的时候,应当慎重考虑它们的地域和空间分布,尽可能降低算力的成本。我们知道,不同的地区的土地、水、电力等要素的价格是不同的,这决定了在不同地区生产相同的算力所需要的成本也不尽相同。因此,在建设算力基础设施时,必须统筹全局,尽可能优化成本。需要指出的是,我国正在推进的“东数西算”工程就是这个思路的一个体现。由于我国东部各种资源的使用成本都要高于西部,因此在西部地区建立算力设施,就会大幅降低算力的供给成本,从而在全国范围内达到更优的配置效率。 第二,应当加强与算力相关的硬件技术及其应用的研发,为增加算力供应提供支持。与算力相关的硬件技术既包括基于经典计算的各种硬件,如芯片、高性能计算机等,也包括超越经典计算理论,根据新计算理论开发的硬件,如量子计算机等。从供给的角度看,这些硬件是根本,它们的性能直接关系到算力提供的可能性界限。因此,必须用政策积极促进这些硬件的攻关和研发。尤其是对于一些“卡脖子”的项目,应当首先加以突破。 这里需要指出的是,在进行技术研发的同时,也应该积极探索技术的应用。例如,我们现在已经在量子计算领域取得了一些成果,但是由于用例的缺乏,这些成果并没有能够转化为现实的应用。从这个意义上讲,我们也需要加强对技术应用的研究。如果可以把一些计算问题转化成量子计算问题,就可以充分发挥量子计算机的优势,实现计算效率的大幅提升。 第三,应当对算法、架构等软件层面的要素进行优化,在保证AI产品性能的同时,尽可能减少对算力的依赖。从降低AI计算成本的角度看,降低模型的算力需求和提升算力具有同等重要的意义。因此,在用政策的手段促进算力供给的同时,也应当以同样的力度对算法、架构和模型的优化予以同等的激励。 考虑到类似的成果具有十分巨大的社会正外部性,因此用专利来保护它们并不是最合适的。因此,可以积极鼓励对取得类似成功的人员和单位给予直接的奖励,并同时鼓励他们将这些成果向全社会开源;也可以考虑由政府出面,对类似的模型产品进行招标采购。如果有个人和单位可以按照要求提供相应的成果,政府就支付相应的费用,并对成果进行开源。通过这些举措,就可以很好地激励人们积极投身到改进模型、节约算力的事业中,也可以在有成果产出时,让全社会及时享受到这些成果。 总而言之,在人工智能突飞猛进的时代,算力可能是决定人工智能发展上限的一个关键因素。唯有在算力问题上实现突破,人工智能的发展才可能有根本保障。 来源:金色财经
lg
...
金色财经
2023-02-21
OpenAI
与AIGC:改变人类生产范式 通往“万物的摩尔定律”
go
lg
...
Content)。 而本文聚焦的公司
OpenAI
,在这场生成式 AI 的突破中起到了关键性的作用,通过堆叠海量算力的大模型(Foundation Model)使 AIGC 进化。 在 2022 年上半年,
OpenAI
旗下三个大模型 GPT-3、GitHub Copilot 和 DALL·E2 的注册人数均突破了 100 万人,其中 GPT-3 花了 2 年,GitHub Copilot 花了半年,而 DALL·E2 只用了2个半月达到了这一里程碑,足见这一领域热度的提升。 研究型企业引领的大模型发展,也给了下游应用领域很大的想象空间,语言生成领域已经在文案生成、新闻撰写、代码生成等领域诞生了多家百万级用户、千万级美金收入的公司。 而最出圈的图片生成领域两大产品 MidJourney 和 Stable Diffusion 都已经有相当大的用户群体,微软也已经布局在设计软件中为视觉设计师提供 AIGC 内容,作为设计灵感和素材的来源。同时 3D 和视频生成领域的大模型也在飞速突破的过程中,未来很可能会在游戏原画、影视特效、文物修复等领域发挥作用。 从神经网络的角度看,当前的大模型 GPT-3 有 1750 亿参数,人类大脑有约 100 万亿神经元,约 100 个神经元会组成一个皮质柱,类似于一个小的黑盒神经网络模块,数量级上的差异决定了算力进步可以发展的空间还很大。与此同时,今天训练 1750 亿参数的 GPT-3 的成本大概在 450 万美元左右,根据成本每年降低约 60% 的水平,供大模型提升计算复杂度的空间还很多。
OpenAI
CEO、YC 前主席 Sam Altman 的图景中,AI 大模型发展的最终目标是 AGI(通用人工智能,Artificial General Intelligence),当这一目标实现的时候,人类经济社会将实现”万物的摩尔定律“,即万物的智能成本无限降低,人类的生产力与创造力得到解放。 归纳并演绎生成式 AI 是什么 AI 模型大致可以分为两类:决策式 AI 与生成式 AI。 根据机器学习教科书,决策式模型 (Discriminant Model)学习数据中的条件概率分布;生成式模型 (Generative Model)学习数据中的联合概率分布,两者的区别在于擅长解决问题的方式不同: 决策式 AI 擅长的是基于历史预估当下,有两大类主要的模型应用,一类是辅助决策,常用在推荐系统和风控系统中;第二类是决策智能体,常用于自动驾驶和机器人领域。 生成式 AI 擅长的是归纳后演绎创造,基于历史进行缝合式创作、模仿式创新——成为创作者飞船的大副。所谓 AIGC(AI Generated Content),便是使用生成式AI主导/辅助创作的艺术作品。 不过在10年代的机器学习教科书中,早已就有了这两类AI。为何 AIGC 在20年代初有了显著突破呢?答案是大模型的突破。 The Bitter Lesson大模型助 AIGC 进化 时间倒回到 19 年 3 月,强化学习之父 Richard Sutton 发布了名为 The Bitter Lesson(苦涩的教训)的博客,其中提到:”短期内要使AI能力有所进步,研究者应寻求在模型中利用人类先验知识;但之于AI的发展,唯一的关键点是对算力资源的充分利用。“ Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of computation. 该文章在当时被不少 AI 研究者视为对自己工作的否定,极力辩护。但如果拉长时间线回看,会发现这位泰斗所言不虚: 机器学习模型可以从参数量级上分为两类:统计学习模型,如 SVM(支持向量机)、决策树等数学理论完备,算力运用克制的模型;和深度学习模型,以多层神经网络的深度堆叠为结构,来达到高维度暴力逼近似然解的效果,理论上不优雅但能高效的运用算力进行并行计算。 神经网络模型在上世纪 90 年代出现,但在 2010 年前,统计学习模型仍是主流;后来得益于 GPU 算力的高速进步,基于神经网络的深度学习模型逐渐成为主流。 深度学习充分利用了 GPU 擅长并行计算的能力,基于庞大的数据集、复杂的参数结构一次次实现出惊人的效果,刷新预期。大模型便是深度学习模型参数量达到一定量级,只有大型科技公司才能部署的深度学习模型。 2019年,
OpenAI
从非营利组织变为营利性公司,接受微软 10 亿美金注资。这一合作奠定了他们有更多算力资源,并能依仗微软的云基础建设随时将大模型(Foundation Model)发布为商用 api。 与此同时,还有第三件事值得关注,大模型 AI 的研究方向出现了转变,从智能决策式 AI 转变为内容生成式 AI:原本主要大模型集中于游戏的智能决策体,如 DeepMind 开发的打败围棋冠军的 AlphaGo、
OpenAI
开发的打败 Dota 职业选手的
OpenAI
Five。 Transformer 模型(后文将详细介绍)的发布让
OpenAI
嗅到了更适合他们的机会——预训练语言模型。在那之后,他们开始在 AIGC 的方向上开枝散叶:沿着 2018 年时低调发布的 GPT 模型轨迹发布了一系列模型族,一次次刷新文本生成大模型的效果,印证 Sutton 提出的宗旨:充分运用海量算力让模型自由的进行探索和学习。
OpenAI
的大模型发展之路 2019年2月:GPT-2 初版发布,1.2 亿参数量 2019年3月:
OpenAI
LP 成立 2019年7月:微软注资 10 亿美金 2019年11月:GPT-2 最终版发布,15 亿参数量,宣布暂时不开放使用为避免假信息伪造 2020年6月:GPT-3 发布,1750 亿参数量,后续开放
OpenAI
API 作为商用 2021年1月:DALL·E 与 CLIP 发布 2021年10月:
OpenAI
Codex 发布,为 GPT-3 为 coding 场景的特化模型、Github Copilot 的上游模型 2022年4月:DALL·E2 发布 1、GPT-3,AI文本生成巅峰之作 深度学习兴起于计算机视觉领域的应用,而大模型的发展开始于 NLP 领域。在数据、算力充分发展的过程中,Transformer 模型以 attention 机制高度并行化的结构充分利用算力,成为 NLP 领域预训练模型的标杆。 著名的独角兽 Hugging Face 也是从对该模型的复现和开源起家。除了 attention 机制的高效之外,它还有两个重要特点:迁移学习(transfer learning)和自监督学习(self-supervised learning)。 顾名思义,迁移学习指在一个极庞大的数据集上充分学习历史上的各类文本,把经验迁移到其他文本上。 算法工程师会将第一步训练完成的模型存储下来,称为预训练模型。需要执行具体任务时,基于预训练版本,进行定制化微调(fine-tune)、或展示少许范例(few-shot/zero-shot)。 而自监督学习,得从机器学习中的监督学习讲起。前面提到若需要学习一匹马是否在奔跑,需要有一个完整标注好的大数据集。 自监督学习不需要,当 AI 拿到一个语料库,可以通过遮住一句话中的某个单词、遮住某句话的下一句话的方式,来模拟一个标注数据集,帮模型理解每个词的上下文语境,找到长文本之间的关联。该方案大幅提高了对数据集的使用效率。 谷歌发布的 BERT 是 Transformer 时代的先驱,
OpenAI
发布的 GPT-2 以相似的结构、更胜一筹的算力后来居上。直到2020年6月,
OpenAI
发布了 GPT-3,成为该模型族,甚至整个文本生成领域的标杆。 GPT-3 的成功在于量变产生质变:参数比 GPT-2 多了两个数量级(1750亿vs 15亿个参数),它用的最大数据集在处理前容量达到 45TB。 如此巨大的模型量级,效果也是史无前例的。给 GPT-3 输入新闻标题”联合卫理公会同意这一历史性分裂“和副标题”反对同性恋婚姻的人将创建自己的教派“,生成了一则以假乱真的新闻,评估人员判断出其为AI生成的准确率仅为 12%。以下是这则新闻的节选: 据《华盛顿邮报》报道,经过两天的激烈辩论,联合卫理公会同意了一次历史性的分裂:要么创立新教派,要么”保持神学和社会意义上的保守“。大部分参加五月教会年度会议的代表投票赞成进一步禁止 LGBTQ 神职人员的任命,并制定新的规则”规范“主持同性婚礼的神职人员。但是反对这些措施的人有一个新计划:于2020 年组成一个新教派”基督教卫理公会“。 要达到上述效果,成本不容小觑:从公开数据看,训练一个 BERT 模型租用云算力要花约 1.2 万美元,训练 GPT-2 每小时要花费 256 美元,但
OpenAI
并未公布总计时间成本。考虑到 GPT-3 需要的算力是 BERT 的 2000 多倍,预估发布当时的训练成本肯定是千万美元级别,以至于研究者在论文第九页说:我们发现了一个 bug,但没钱再去重新训练模型,就先这么算了吧。 2、背后DALL·E 2,从文本到图片 GPT-3杀青后,
OpenAI
把大模型的思路迁移到了图片多模态(multimodal)生成领域,从文本到图片主要有两步:多模态匹配:将 AI 对文本的理解迁移至对图片的理解;图片生成:生成出最符合要求的高质量图片。 对于多模态学习模块,
OpenAI
在 2021 年推出了 CLIP 模型,该模型以人类的方式浏览图像并总结为文本内容,也可以转置为浏览文本并总结为图像内容(DALL·E 2中的使用方式)。 CLIP (Contrastive Language-Image Pre-Training) 最初的核心思想比较简单:在一个图像-文本对数据集上训练一个比对模型,对来自同一样本对的图像和文本产生高相似性得分,而对不匹配的文本和图像产生低相似性分(用当前图像和训练集中的其他对的文本构成不匹配的样本对)。 对于内容生成模块,前面探讨了文本领域:10 年代末 NLP 领域生成模型的发展,是 GPT-3 暴力出奇迹的温床。而计算机视觉 CV 领域 10 年代最重要的生成模型是 2014 年发布的生成对抗网络(GAN),红极一时的 DeepFake 便是基于这个模型。GAN的全称是 Generative Adversarial Networks——生成对抗网络,显然”对抗“是其核心精神。 注:受博弈论启发,GAN 在训练一个子模型A的同时,训练另一个子模型B来判断它的同僚A生成的是真实图像还是伪造图像,两者在一个极小极大的博弈中不断变强。 当A生成足以”骗“过B的图像时,模型认为它比较好地拟合出了真实图像的数据分布,进而用于生成逼真的图像。当然,GAN方法也存在一个问题,博弈均衡点的不稳定性加上深度学习的黑盒特性使其生成。 不过
OpenAI
大模型生成图片使用的已不是 GAN 了,而是扩散模型。2021年,生成扩散模型(Diffusion Model)在学界开始受到关注,成为图片生成领域新贵。 它在发表之初其实并没有收到太多的关注,主要有两点原因: 其一灵感来自于热力学领域,理解成本稍高; 其二计算成本更高,对于大多高校学术实验室的显卡配置而言,训练时间比 GAN 更长更难接受。 该模型借鉴了热力学中扩散过程的条件概率传递方式,通过主动增加图片中的噪音破坏训练数据,然后模型反复训练找出如何逆转这种噪音过程恢复原始图像,训练完成后。扩散模型就可以应用去噪方法从随机输入中合成新颖的”干净“数据。该方法的生成效果和图片分辨率上都有显著提升。 不过,算力正是大模型研发公司的强项,很快扩散模型就在大公司的调试下成为生成模型新标杆,当前最先进的两个文本生成图像模型——
OpenAI
的 DALL·E 2 和 Google 的 Imagen,都基于扩散模型。DALL·E 2 生成的图像分辨率达到了 1024 × 1024 像素。例如下图”生成一幅莫奈风格的日出时坐在田野里的狐狸的图像“: 除了图像生成质量高,DALL·E 2 最引以为傲的是 inpainting 功能:基于文本引导进行图像编辑,在考虑阴影、反射和纹理的同时添加和删除元素,其随机性很适合为画师基于现有画作提供创作的灵感。比如下图中加入一只符合该油画风格的柯基: DALL·E 2 发布才五个月,尚没有
OpenAI
的商业化api开放,但有 Stable Diffusion、MidJourney 等下游公司进行了复现乃至商业化,将在后文应用部分介绍。 3、
OpenAI
的使命——开拓通往 AGI 之路 AIGC 大模型取得突破,
OpenAI
只开放了api和模型思路供大家借鉴和使用,没去做下游使用场景的商业产品,是为什么呢?因为
OpenAI
的目标从来不是商业产品,而是通用人工智能 AGI。
OpenAI
的创始人 Sam Altman 是 YC 前总裁,投出过 Airbnb、Stripe、Reddit 等明星独角兽(另一位创始人 Elon Musk 在 18 年因为特斯拉与
OpenAI
”利益相关“离开)。 他在 21 年发布过一篇著名的博客《万物的摩尔定律》,其中提到
OpenAI
,乃至整个 AI 行业的使命是通过实现 AGI 来降低所有人经济生活中的智能成本。这里所谓 AGI,指的是能完成平均水准人类各类任务的智能体。 因此,
OpenAI
始终保持着学术型企业的姿态处于行业上游,成为学界与业界的桥梁。当学界涌现出最新的 state-of-art 模型,他们能抓住机会通过海量算力和数据集的堆叠扩大模型的规模,达到模型意义上的规模经济。 在此之后克制地开放商业化 api,一方面是为了打平能源成本,更主要是通过数据飞轮效应带来的模型进化收益:积累更富裕的数据优化迭代下一代大模型,在通往 AGI 的路上走得更坚实。 定位相似的另一家公司是 Deepmind——2010年成立,2014 年被谷歌收购。同样背靠科技巨头,也同样从强化学习智能决策领域起家,麾下的 AlphaGo 名声在外,Elon Musk 和 Sam Altman 刚开始组局创办
OpenAI
,首要的研究领域就是步 AlphaGo 后尘的游戏决策 AI。 不过 19 年后,两者的研究重心出现了分叉。DeepMind 转向使用 AI 解决基础科学如生物、数学等问题:AlphaFold 在预测蛋白质结构上取得了突破性的进展,另一个 AI 模型 AlphaTensor 自己探索出了一个 50 年悬而未决的数学问题:找到两个矩阵相乘的最快方法,两个研究都登上了 Nature 杂志的封面。而
OpenAI
则转向了日常应用的内容生成 AIGC 领域。 AIGC大模型是通往 AGI 路上极为重要、也有些出乎意料的一站。其重要性体现在 AI 对人类传达信息的载体有了更好的学习,在此基础上各个媒介之间的互通成为可能。 例如从自然语言生成编程语言,可以产生新的人机交互方式;从自然语言生成图片和视频,可以革新内容行业的生产范式。意外性则是,最先可能被替代的不是蓝领,而是创作者,DeepMind 甚至在协助科学家一起探索科研的边界。
OpenAI
的模式也给了下游创业者更多空间。可以类比当年预训练语言模型发展初期,Hugging Face把握机会成为大模型下游的模型开源平台,补足了模型规模膨胀下机器学习民主化的市场空间。 而对 AIGC 模型,未来会有一类基于大模型的创业公司,把预训练完成的 AIGC 模型针对每个子领域进行调优。不只需要模型参数优化,更要基于行业落地场景、产品交互方式、后续服务等,帮助某个行业真正用上大模型。 正如 AI 的 bitter lesson 一样矛盾,投资者需要短期投资回报率、研究者需要短期投稿成功率,尽管
OpenAI
走在通往 AGI 正确的路上,这条路道阻且长,短期很难看到极大的突破。而 Sam Altman 展望的大模型应用层公司很有可能有更高的高投资回报,让我们来介绍下主要的分类与创业者。 百家争鸣的 AIGC 大模型应用层 对应
OpenAI
大模型发布的顺序,模型应用层相对最成熟的是文本生成领域,其次是图片生成领域,其他领域由于还未出现统治级的大模型相对落后。 文本领域天然应用场景丰富,且 GPT-3 开放 api 很久,细分赛道很多。大致可以根据生成内容不同分为两类:机器编程语言生成、人类自然语言生成。前者主要有代码和软件行为的生成等,后者主要有新闻撰写、文案创作、聊天机器人等。 而图片领域当前还专注于图片自身内容的生成,预期随着未来3D、视频相关内容生成能力的增强,会有更多结合不同业务场景如游戏、影视这样细分领域的创业公司。 以下是海外各子领域创业公司的梳理,接下来将针对几个领域的重要公司进行介绍。 1、编程语言 文本领域最成熟的应用暂时不在人类自然语言,而是在代码等机器语言的生成领域。因为机器语言相对更结构化,易学习;比如鲜有长文本的上下文关系、基于语境的不同含义等情况。 (1)代码生成:Github Copilot 代表公司是微软出品的 Github Copilot,编程中的副驾驶。该产品基于
OpenAI
专门用 GPT-3 为编程场景定制的AI模型 Codex。使用者文字输入代码逻辑,它能快速理解,根据海量开源代码生成造好的轮子供开发者使用。提高一家科技公司 10% 的 coding 效率能带来很大收益,微软内部已进行推广使用。 相比低代码工具,Copilot 的目标群体是代码工作者。未来的低代码可能是两者结合:低代码 UI 界面实现代码框架搭建,代码子模块通过 Copilot 自动生成。 正如 Copilot 的 slogan:Don’t fly solo,没有 Copilot 的帮助 coder 的工作会变得繁冗,没有 coder 的指引 Copilot 生成的内容可能会出现纰漏。也有用户报告了一些侵犯代码版权、或代码泄露的案例,当前技术进步快于版权法规产生了一定的空白。 (2)软件行为生成:Adept.ai Adept.ai 是一家明星创业公司。创始团队中有两人是Transformer 模型论文作者,CEO 是谷歌大脑中大模型的技术负责人,已经获得 Greylock 等公司 6500 万美元的 A 轮融资。 他们的主要产品是大模型 ACT-1,让算法理解人类语言并使机器自动执行任务。目前产品形态是个 chrome 插件,用户输入一句话,能实现单击、输入、滚动屏幕行文。在展示 demo中,一位客服让浏览器中自动记录下与某位顾客的电话,正在考虑买 100 个产品。这个任务需要点击 10 次以上,但通过 ACT-1 一句话就能完成。 软件行为生成颠覆的是当下的人机交互形式,使用文字或语音的自然语言形式来代替当下人与机器的图形交互模式(GUI)。大模型成熟后,人们使用搜索引擎、生产力工具的方式都将变得截然不同。 2、自然语言 自然语言下还有多个应用型文本生成领域值得关注:新闻撰写、文案创作、对话机器人等。 (1)新闻撰写 最著名的是 Automated Inights。他们的结构化数据新闻撰写工具叫做 wordsmith,通过输入相应数据和优先级排序,能产出一篇基于数据的新闻报道。该工具已在为美联社每季度自动化产出 300 余篇财报相关报道,在雅虎体育新闻中也已经崭露头角。据分析师评价,由 AI 完成的新闻初稿已接近人类记者在 30 分钟内完成的报道水准。 Narrative Science是另一家新闻撰写生成公司,其创始人甚至曾预测,到 2030 年,90%以上的新闻将由机器人完成。 (2)文案创作 该领域竞争较为激烈,有copy.ai、Jasper、copysmith 等公司。他们基于 GPT-3 的能力加入了文案领域的人工模板与结构,为商家和个人创作者提供了快速为自己的商品、内容进行宣传的能力。以copysmith 为例: (3)对话机器人 前面提到的 Adept.ai 由Transformer 模型的一作和三作联合创立;而二作也创业了,他创办的 Character.ai 是当前对话机器人中使用效果最逼真的。 该对话机器人可以自定义或使用模板来定义角色的家庭、职业、年龄等,在此基础上保持一贯的设定和符合设定的对话风格。经常能体现出一定的共情对话能力带给人惊喜,并且支持多语言互通。 比如他们有已训练好的马斯克等名人和一些动漫角色,与他们对话会有很棒的代入感。 而商业化的对话机器人,在客服、销售等行业有巨大的市场空间,但如今还为成熟。 主要出现的问题有二: 其一,客服、销售行业遇到的客户往往情绪状态不稳定,AI 难以对情绪进行适应并调整对话内容; 其二,AI 的多轮对话能力较弱,无法保证持续有效的跟进问题。 (4)创作性文本 AI 对于长文本创作有一定困难,难以保持1000字以上的文本创作后仍能进行上下文的联系。 但基于短文本创作仍有一些有趣的应用,例如基于GPT-3的 AI Dungeon,可以引导 AI 创造一个虚拟游戏世界观。该领域进一步的成长需要期待未来 3-5 年,有成熟的能产出千字内容的 AI 出现。 3、多模态图片 DALL·E2 是极具突破性的 AIGC 大模型,但距离丰富生产力和创造力的成熟产品还有差距。因此有研究者顺着 DALL·E 和 CLIP 的思路开发了开源版本的扩散模型,就像当年的 Hugging Face 那样,并将其根据创作者社区的反馈转变为更成熟易用的商业产品。接下来就介绍几个主要出圈的模型: (1)Disco Diffusion 最早出圈的 AI 绘图工具是开源模型Disco Diffusion。发布时间比 DALL·E 2 稍晚,同样也是 CLIP + Diffusion Model 的结构,生成效果让许多插画师担心起了失业。 尽管很多插画师和 AI 工具爱好者的推荐都认可了该工具的易用性和生成效果的出众,但其生成时间略长有待优化,可以认为是大家对图片生成大模型的初体验。 (2)MidJourney 该模型发布后不久,Disco Diffusion 的开发者 Somnai 加入了 MidJourney,和团队一起打造了一款产品化的 Disco Diffusion。 Midjourney 的创始人 David Holz 并不是以CV(计算机视觉)研究为主,更关注人机交互。产品公测和主要交流平台都基于Discord,使用 Discord Bot 进行交互,打造了相当良好的社区讨论环境。 使用中印象深刻的有几个重要功能:MidJourney 画廊中可以看到每时每刻创作者们用 MJ 创作出的作品,用户可以对作品进行打分,每周排名靠前的作品将得到额外的 fast GPU 时间奖励。 同时,MJ官方还为用户贴心的提供了引导语 prompt 集合和 AI 擅长的风格指南,指导用户如何最高效的生成出他们想要的图片。 基于良好的产品和社区体验,MidJourney 的付费用户量也是目前最大的。 目前收费模式采用了订阅制,个人用户有两个档位,每月最多 200 张图片(超额另收费)的 10 美元/月,以及”不限量“图片的 30 美元/月;对企业客户,单人一年收费仅有 600 美元,且生成的作品可以商用(当前法规尚不完善,仍可能存在一定版权问题)。 (3)Stable Diffusion 如果说 MidJourney 是一个勤勤恳恳的绩优生,那么 Stability.ai 则是天赋异禀技术力强、诞生之初就备受 VC 追捧的富二代,公司估值已达到十亿美元。产品 Stable Diffusion 首要目标是一个开源共创模型,与当年的 Hugging Face 神似。 创始人 Emad 之前是对冲基金经理,用自己充裕的资金联合 LMU 和 Runaway ML开发了开源的 Stable Diffusion,在 Twitter 上使用扎克伯格在 Oculus 发布会上的照片作为背景,号召SD会成为”人类图像知识的基础设施“,通过开源让所有人都能够使用和改进它,并让所有人更好地合作。 Stable Diffusion 可以认为是一个开源版本的DALL·E2,甚至不少使用者认为是当前生成模型可以使用的最佳选择。官方版本部署在官网 Dream Studio 上,开放给所有用户注册。 相比其他模型,有很多可以定制化的点。不过官网只有 200 张免费额度,超过需要付费使用,也可以自行使用开源 Colab 代码版无限次使用。此外,Stable Diffusion 在压缩模型容量,希望使该模型成为唯一能在本地而非云端部署使用的 AIGC 大模型。 05 AIGC大模型的未来展望 1、应用层:多模态内容生成更加智能,深入各行业应用场景 上述的多模态图片生成产品当前主要局限于创作画作的草图和提供灵感。在未来待版权问题完备后, AIGC 内容能进入商用后,必然会更深入地与业界的实际应用进行结合: 以游戏行业为例, AI 作画给了非美术专业工作者,如游戏策划快速通过视觉图像表达自己需求和想法的机会;而对美术画师来说,它能够在前期协助更高效、直接地尝试灵感方案草图,在后期节省画面细节补全等人力。 此外,在影视动画行业、视频特效领域,甚至是文物修复专业,AI 图片生成的能力都有很大想象空间。当然,这个领域 AI 的能力也有着不小的进步空间,在下面的未来展望部分进行阐发。 目前 AIGC 存在 Prompt Engineering 的现象,即输入某一些魔法词后生成效果更好。这是目前大模型对文本理解的一些缺陷,被用户通过反向工程进行优化的结果。未来随着语言模型和多模态匹配的不断优化,不会是常态,但中短期内预期Prompt Engineering 还是得到好的生成内容的必备流程之一。 2、模态层:3D生成、视频生成 AIGC 未来3-5年内有明显进步 多模态(multimodal)指不同信息媒介之间的转换。 当前 AI 作图过程中暴露的问题会成为视频生成模型的阿喀琉斯之踵。 例如:AI 作画的空间感和物理规则往往是缺失的,镜面反射、透视这类视觉规则时常有所扭曲;AI 对同一实体的刻画缺少连续性。根本原因可能是目前深度学习还难以基于样本实现一些客观规则泛化,需要等待模型结构的优化进行更新。 3D生成领域也有很大价值:3D 图纸草图、影视行业模拟运镜、体育赛场现场还原,都是 3D 内容生成的用武之地。这一技术突破也渐渐成为可能。 2020年,神经辐射场(NeRF)模型发布,可以很好的完成三维重建任务:一个场景下的不同视角图像提供给模型作为输入,然后优化 NeRF 以恢复该特定场景的几何形状。 基于该技术,谷歌在2022年发布了 Dream Fusion 模型,能根据一段话生成 360 度三维图片。这一领域当前的实现效果还有优化空间,预期在未来3-5年内会取得突破性进展,推动视频生成的进步。 3、模型层:大模型参数规模将逼近人脑神经元数量 近年的大模型并未对技术框架做颠覆性创新,文本和图像生成领域在大模型出现前,已有较成熟方案。但大模型以量变产生质变。 从神经网络角度看,大脑有约 100 万亿神经元, GPT-3 有 1750 亿参数,还相差了 1000 倍的数量级,随着算力进步可以发展的空间还很大。 神经网络本质是对高维数据进行复杂的非线性组合,从而逼近所观测数据分布的最优解,未来一定会有更强的算力、更精妙的参数堆叠结构,来刷新人们对AI生成能力的认知。 4、成本结构决定大模型市场的马太效应 大模型最直接的成本便是能源成本(energy cost),GPT-3 发布时的训练成本在千万美元级别。难以在短期内衡量 ROI ,大科技公司才能训练大模型。 但随着近年模型压缩、硬件应用的进步,GPT-3 量级的模型成本很可能已降至百万美元量级,Stable Diffusion 作为一个刚发布一个月的产品,已经把原本 7GB 的预训练模型优化压缩至 2GB 左右。 在这样的背景下,算力成本在未来必然会逐渐变得更合理,但 AIGC 领域的另一个成本项让笔者对市场结构的预测还是寡头垄断式的。 大模型有明显的先发优势,来自巨大的隐形成本:智能成本。前期快速积累用户反馈数据能帮助模型持续追新优化,甩开后发的竞争者,达到模型性能的规模效应。 AI 的进化来自于数据的积累和充分吸收。深度学习,乃至当前的所有机器学习都是基于历史预估未来,基于已有的数据给到最接近真实的可能。 正如前文讨论的,
OpenAI
的目标从来不是留恋于某个局部行业的商业产品,而是通过模型规模经济,不断地降低人类社会全局的智能成本,逼近通用人工智能 AGI。规模经济正体现在智能成本上。 5、虚拟世界的 AGI 会先于现实世界诞生 从更宏观的视角上,虚拟世界 AI 技术的智能成本比现实世界中来得低得多。现实里 AI 应用最普遍的是无人驾驶、机器人等场景,都对 Corner Case 要求极高。 对于AI模型而言,一件事超过他们的经验范畴(统计上out of distribution),模型将立马化身人工智障,不具备推演能力。现实世界中 corner case 带来的生命威胁、商业资损,造成数据积累过程中极大的试错成本。 虚拟世界则不同,绘图时遇到错位扭曲的图片,大家会在 Discord 中交流一笑了之;游戏 AI 产生奇怪行为,还可能被玩家开发出搞怪玩法、造成病毒传播。 因此虚拟世界,尤其是泛娱乐场景下的 AIGC 积累数据成本低会成为优势。这个领域的 AI 如果节省人力、生成内容产生的商业价值能大于算力成本,能很顺畅地形成低成本的正向循环。 伴随着另一个重要的革新——长期 Web3.0元宇宙场景下新内容经济生态的形成,虚拟世界内容场景下的 AI 很可能更早触及到 AGI。 来源:金色财经
lg
...
金色财经
2023-02-21
下一个CFX、AI黑马项目?众“V”力挺的CNTM能否成为AI板块龙头?
go
lg
...
去年11月,
OpenAI
发布ChatGPT引爆全球对人工智能的广泛关注,这一杀手级应用成为了众人茶余饭后讨论的话题,并在2个月内达到了1亿月活用户,成为了史上增长最快的消费者应用。 而在此之前,作为全民应用的抖音取得相应的成绩也用了9个月时间。 一时间,ChatGPT风头无两,让诸多知名企业纷纷侧目,似乎在一瞬间找到了新的流量密码,消费者对人工智能(AI)的关注和需求远超预期。 之后,众多知名企业纷纷下场,AI成为了科技创新企业的又一兵家必争之地。 而币圈不可避免的被这股风向带动! AI 热度的持续发酵也引爆了相关概念资产的短时间的上涨,加密货币市场也不例外,“Web3+AI”相关概念引发了市场关注,那么基于人工智能的Web3搜索引擎—CNTM,是否会成为AI板块下一个龙头? 什么是 CNTM ? CNTM是一个来自于日本的AI项目,目前主打的产品是一个基于Chatgpt的搜索引擎项目---jinn。 Connectome是一个基于区块链核心技术开发的DeFi人工智能投顾平台,支持DeFi产品上链交易、理财产品去中心化AI测评、流动性挖矿、一键式智能投顾、智能客服等。通过大数据多维分析、AI模型演练,为用户提供接近一站式的、定制化人工智能投资顾问服务,为理财产品发行人、投资用户提供全方位的区块链解决方案。 基于ChatGPT的理论,创建CNTM的GPT平台:Jinn 为Jinn加入双引擎结构:GPT引擎+传统搜索引擎,从而实现Web3的AI搜索功能 将Jinn与CNTM1.0的板块结合,增强金融领域的AI搜索推荐功能 Jinn简介 CNTM的GPT引擎Jinn会对用户的行为进行分类和建模,并将Web3上相应的内容和产品链接给用户。Jinn将提供例如数据分析、自动化交互及网络安全相关的专业建议,帮助用户更快更好的接受到核心信息。降低用户搜索信息准确度所耗费的时间,并提高效率。 CNTM代币情况 代币总量共1亿4千万,目前流通量约120W左右,具体流通机制不详 CNTM代币的应用场景为可以使用代币支付使用其人工智能产品,这一点和FET、AGIX等都一样。然而目前还是没有产品,所以也没有所谓的staking机制。 雅虎重金布局AI赛道,CNTM快速借力上位 随着
OpenAI
的爆火,全球各大科技巨头都开始全力布局AI赛道,其中包括雅虎。在与Line合并之后,日本雅虎每年将投入超过1000亿日元用于人工智能技术的投资与开发,致力于成为全球领先的AI公司。 日本雅虎与CNTM正式达成了合作,在AI智能搜索方面进行全面的业务合作,雅虎也将为CNTM提供相应的资源与资金支持,致力于共同打造全球第一的AI Web3搜索引擎。 此前,CFX宣布将与中国电信合作于今年晚些时候在香港推出首个 BSIM 试点项目。第二天,欧易OKX行情显示,CFX上行突破0.1 USDT,最高涨至0.11 USDT;现报0.09736 USDT,24H涨幅为18.88%。 我们可以通过CFX暴涨来预测CNTM的一个涨幅! 先简单介绍一下CFX CFX是Conflux树图的token、树图成立于18年是目前少有依然存在且做事的国产公链,和政府与高校也有相关合作,20年和上海市政府合作成立了树图研究院,并且和湖南省政府合作成立区块链实验室,且官网所说是唯一合规、公开、免许可的区块链。 说实在国产公链的时代在2017年那可是巅峰,轻则百倍,重则千倍。那时候确实厉害,不过随着币圈近几年的发展和政策的改变也让国产公链发展的空间有所减缓,再加上国内各种CX盘崩盘,让国人对国产公链敬而远之。 不过CFX的突然崛起是因为与中国电信的合作,不知道大家还有没有印象,当时cfx的价格很高,背景强大,然而两年下来,却也是暴跌了接近99%。从最高1.7跌倒0.02,最后配合这么一个消息,距离底部价格直接就是拉升了八倍。 我们再回到CNTM,日本雅虎与CNTM正式达成了合作。日本第一大财团 伊藤忠商事株式会社已对CNTM进行战略投资 2023年中期计划“Brand New Deal 2023”将围绕下一代AI智能搜索引擎展开。就拿这一点来说,CFX与CNTM有异曲同工之妙,想必CNTM的涨势也将因为此次的合作而极度飙升! 不止雅虎,日本第一大财团伊藤忠商事在2020年对CNTM进行了第一轮战略投资,目标是创造新的服务,而不仅仅是利用AI技术节省人力和自动化业务。今日伊藤忠商事株式会社已对CNTM进行战略投资。2023年中期计划“Brand New Deal 2023”将围绕CNTM的下一代AI智能搜索引擎Jinn展开。 宣发 1、海内外大V助力宣发,各大社群也是异常火爆,倪森Phyrex推特上分享大盘走势的Top3助力CNTM起飞! 2、COCOS布道大佬A神看好CNTM智能搜索引擎前景,开始布道CNTM。众所周知,A神主攻步道潜力币种,COCOS就是他的代言币种之一! 消息面: 1.CNTM 2月25日将与ADA在台湾举办线下会议,同时收到清华大学邀请参与AI人工智能技术会议;同时AGIX也是ADA和Ocean深度孵化的项目,预计CNTM将会是ADA和Ocean共同孵化的第二个AI项目。 2.据官方消息:CNTM要和日本某顶级互联网公司达成AI方面的合作,如果利好落地,涨幅预计会像CFX一样。 3.CNTM官方推特宣布同时布局 AI 以及 LSD 赛道,第一个CNTM产品跟 NFT 交易所的结合在2月底即将推出,为登录某安交易所做准备。 4.Connectome宣布成立CNTM Grant DAO Fund CNTM Grant DAO 是 CNTM 的一个长期资助计划,旨在资助早期的优质 CNTM BUIDL,以进一步丰富 CNTM 生态体系,项目评审和奖励发放将会定期进行,此外,作为 CNTM Grant DAO 长期资助计划的一部分,CNTM Grant DAO 还将资助除 AI 生态外的 BUIDL、社区等优质团队,持续赋能极客运动。 来源:金色财经
lg
...
金色财经
2023-02-21
上一页
1
•••
446
447
448
449
450
•••
483
下一页
24小时热点
中国房地产突传“撤资”利空!新加坡资管巨头:将大幅削减对华仓位……
lg
...
市场周评:俄乌冲突骤然升级!普京重大宣布 金价暴涨近153美元 油价飙升逾6%
lg
...
中美重磅!彭博专栏:特朗普贸易战曾让中国措手不及 但中国领导人这次准备好了
lg
...
金价惊人暴涨后技术面大变脸!FXStreet分析师黄金下周预测 这些因素恐引爆行情
lg
...
重磅!特朗普提名这位对冲基金经理为财政部长 将负责执行提高关税和减税
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
14讨论
#链上风云#
lg
...
47讨论
#美国大选#
lg
...
1326讨论
#VIP会员尊享#
lg
...
1495讨论
#比特币最新消息#
lg
...
602讨论