全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
财富汇
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
提前降息没戏了? A股"迎头赶上" 美股本周将迎关键考验
go
lg
...
升势将受到人工智能(AI)明星英伟达(
Nvidia
)业绩的考验。 PPI和CPI的高读数导致市场大幅缩减降息定价 道明证券全球宏观策略主管James Rossiter表示:“最近发布的好坏参半的经济数据使我们处于一个过渡期,我们正在等待数据讲述一个一致的故事。” 上周公布的美国消费者物价指数(CPI)数据炙手可热,周五生产者价格(PPI)指数再次意外上行,引发投资者对持续通胀的担忧。 零售销售报告疲软则加剧了投资者对通胀的担忧,表明经济势头放缓。 然而,美国劳动力市场数据继续显示就业岗位强劲增长且工资增长加快。 #美联储政策转向# 摩根大通(JPMorgan)全球经济主管Bruce Kasman警告称,美联储青睐的核心个人消费通胀指标1月份可能会上涨0.5%。就在一周前,市场预计涨幅仅为0.2%。 Kasman在一份报告中写道:“虽然现在对嘈杂的1月份数据给予过大重视还为时过早,但风险已经转向核心通胀和劳动力市场状况都令美联储在 2024 年上半年变得强硬的方向。” 通胀的意外,意味着美联储本周最后一次政策会议的纪要现在看来已经过时,但任何有关潜在降息时机的讨论都将受到关注。 本周有很多美联储发言人对前景发表评论。其中美联储副主席菲利普·杰斐逊(Philip Jefferson)和行长克里斯托弗·沃勒(Christopher Waller)特别感兴趣。 两年期国债收益率上周五飙升至4.72%的2024年新高,然后稳定在4.65%。 周一(19日),随着现货市场休市,国债期货几乎没有变化。 标准普尔500指数期货持平;纳斯达克期货上升0.22%,因寄望于英伟达本周三公布的财报,能够以某种方式突破已经很高的预期。 今年迄今为止,这家芯片制造商的股价已飙升46%,占标准普尔500指数升幅的四分之一以上。 鉴于迄今为止,标准普尔500指数中80%的公司报告中,高达75%的业绩好于预期,因此有理由对美国股市感到乐观。 汇市方面,较高的债券收益率支撑着美元兑日元汇率至149.95日元。尽管日本央行干预支撑日元的威胁迄今已将该货币对限制在150.88日元。 美元指数小幅走强,欧元兑美元当天稳定在1.0774美元附近。 收益率的上升并没有影响无收益黄金的光芒,黄金上升0.3%至每盎司2,018美元左右。 由于对需求的担忧与中东供应中断的威胁相矛盾,油价走软。 布伦特原油价格下跌76美分,至每桶82.71美元;美国4月份原油价格下跌51美分,至每桶78.91美元。
lg
...
marsh
02-19 20:23
中国重开局未能掀起连锁反应!荷兰国际集团:离岸人民币几乎未动 美元多头本周续命
go
lg
...
会议纪要的发布,以及炙手可热的英伟达(
NVIDIA
)季度收益,ING认为周三可能是关键的一天,其他数据包括周二的消费者信心,以及周四的成屋销售。 “可以说,在上周美国短期利率的支撑下,美元指数应该会进一步上涨。理论上,我们预计美元指数本周将保持在104-105区间。然而,从技术上讲,美元指数确实出现了不错的逆转,欧元本周的任何意外走强,都可能引发意外跌破104.00。” 欧元:本周焦点是工资数据和采购经理人指数 欧元/美元现已完全收复上周因美国1月CPI公布高于预期而造成的损失。如上所述,美国日历本周似乎不太可能产生太大影响。然而,在欧元区,市场对周二的欧洲央行协商工资率调查,以及周四发布的2月份PMI初值非常感兴趣。 就前者而言,问题在于协商工资较之前调查的4.7%左右同比下降了多少。在这里,一个高数字可能会提高人们的预期,即4月底更广泛的工资发布也将偏高,并最终消除欧洲央行4月份降息的可能性,目前定价为36%。就后者而言,疲软的PMI发布确实引发了2023年秋天独立欧元的疲软。 ING指出,任何好于预期的二月份数据也可能有助于欧元。作为参考,目前普遍预期欧元区PMI数据将出现微弱反弹,但所有数据仍处于收缩区域。 该机构展望:“欧元/美元一周隐含波动率为5%,表明投资者认为欧元/美元不会快速上涨,这是避免追逐突破的信号。” “我们的基准假设欧元/美元本周在1.0700-1.0800/0810区间波动,但市场需要留意欧元区数据事件可能带来的上行走势风险。”#VIP会员尊享#
lg
...
会员
小萧
02-19 16:28
Galaxy万字长文:加密货币和AI交叉领域和项目盘点
go
lg
...
性能和安全性。 最先进的 GPU(例如
Nvidia
生产的 GPU)的需求量很大。2023年 9 月,Tether收购了德国比特币矿商 Northern Data 的股份,据报道,该公司斥资 4.2 亿美元购买了 10,000 个 H100 GPU(用于 AI 训练的最先进 GPU 之一)。获得一流硬件的等待时间可能至少为六个月,在许多情况下甚至更长。更糟糕的是,公司经常被要求签署长期合同,以获取他们甚至可能不会使用的计算量。这可能会导致存在可用计算但市场上不可用的情况。去中心化计算系统有助于解决这些市场效率低下的问题,创建一个二级市场,计算所有者可以在接到通知后立即转租其过剩容量,从而释放新的供应。 除了有竞争力的定价和可访问性之外,去中心化计算的关键价值主张是抗审查性。尖端AI开发日益由拥有无与伦比的计算和数据访问能力的大型科技公司主导。AI指数报告2023年年度报告中强调的第一个关键主题是,工业界在AI模型的开发方面日益超越学术界,将控制权集中在少数技术领导者手中。这引发了人们的担忧,即他们是否有能力在制定支撑AI模型的规范和价值观方面产生巨大影响力,特别是在这些科技公司推动监管以限制其无法控制的人工智能开发之后。 去中心化计算垂直领域 近年来出现了几种去中心化计算模型,每种模型都有自己的重点和权衡。 广义计算 Akash、io.net、iExec、Cudos 等项目都是去中心化计算应用程序,除了数据和通用计算解决方案之外,它们还提供或即将提供用于 AI 训练和推理的专用计算的访问权限。 Akash是目前唯一完全开源的“超级云”平台。它是使用 Cosmos SDK 的权益证明网络。 AKT 是 Akash 的原生代币,作为一种支付形式,用于保护网络安全并激励参与。 Akash 于 2020 年推出了第一个主网,专注于提供无需许可的云计算市场,最初以存储和 CPU 租赁服务为特色。 2023 年 6 月,Akash推出了一个专注于 GPU 的新测试网,并于 9 月推出了GPU 主网,使用户能够租赁 GPU 进行人工智能训练和推理。 Akash 生态系统中有两个主要参与者——租户和供应商。租户是想要购买 Akash网络计算资源的用户。供应商是计算资源供应商。为了匹配租户和供应商,Akash 依靠逆向拍卖流程。租户提交他们的计算要求,在其中他们可以指定某些条件,例如服务器的位置或进行计算的硬件类型,以及他们愿意支付的金额。然后,供应商提交他们的要价,最低出价者将获得任务。 Akash 验证者维护网络的完整性。验证者集目前限制为 100 个,并计划随着时间的推移逐步增加。任何人都可以通过质押比当前质押 AKT 数量最少的验证者更多的 AKT 来成为验证者。 AKT 持有者还可以将其 AKT 委托给验证者。网络的交易费用和区块奖励以 AKT 形式分配。此外,对于每笔租赁,Akash 网络都会按照社区确定的费率赚取“收取费用”,并将其分配给 AKT 持有者。 二级市场 去中心化计算市场旨在填补现有计算市场的低效率。供应限制导致公司囤积超出其可能需要的计算资源,并且由于与云提供商的合同结构将客户锁定在长期合同中,即使可能不需要持续访问,供应也进一步受到限制。去中心化计算平台释放了新的供应,使世界上任何拥有计算需求的人都可以成为供应商。 AI 训练对 GPU 的需求激增是否会转化为 Akash 上的长期网络使用还有待观察。例如,Akash 长期以来一直为 CPU 提供市场,以70-80% 的折扣提供与中心化替代品类似的服务。然而,较低的价格并没有带来显著的采用。网络上的活跃租约已经趋于平缓,到 2023 年第二季度,平均只有 33% 的计算、16% 的内存和 13% 的存储。虽然这些都是链上采用的令人印象深刻的指标(作为参考,领先的存储提供商 Filecoin 已经2023 年第三季度存储利用率为 12.6%),这表明这些产品的供应继续超过需求。 Akash 推出 GPU 网络已经过去半年多了,现在准确评估长期采用率还为时过早。迄今为止,GPU 的平均利用率为 44%,高于 CPU、内存和存储,这是需求的一个迹象。这主要是由对最高质量 GPU(如 A100)的需求推动的,超过90%已出租。 Akash 的每日支出也有所增加,相对于 GPU 出现之前几乎翻了一番。这部分归因于其他服务使用量的增加,尤其是 CPU,但主要是新 GPU 使用量的结果。 定价与Lambda Cloud 和 Vast.ai 等中心化竞争对手相当(或者在某些情况下甚至更贵)。对最高端 GPU(例如 H100 和 A100)的巨大需求意味着该设备的大多数所有者对在面临竞争性定价的市场上市兴趣不大。 虽然最初的兴趣很有希望,但采用仍然存在障碍(下面进一步讨论)。去中心化计算网络需要采取更多措施来产生需求和供应,团队正在尝试如何最好地吸引新用户。例如,2024 年初,Akash 通过了第 240 号提案,增加 GPU 供应商的 AKT 排放量并激励更多供应,特别针对高端 GPU。团队还致力于推出概念验证模型,向潜在用户展示其网络的实时功能。 Akash 正在训练他们自己的基础模型,并且已经推出了聊天机器人和图像生成产品,可以使用 Akash GPU 创建输出。同样,io.net开发了stable diffusion模型,并正在推出新的网络功能,更好地模仿传统 GPU 数据中心的性能和规模。 去中心化机器学习训练 除了能够满足AI需求的通用计算平台外,一组专注于机器学习模型训练的专业AI GPU供应商也正在兴起。例如,Gensyn正在“协调电力和硬件来构建集体智慧”,其观点是,“如果有人想要训练某些东西,并且有人愿意训练它,那么就应该允许这种训练发生。” 该协议有四个主要参与者:提交者(submitters)、求解者(solvers)、验证者(verifiers)和吹哨者(whistleblowers)。提交者向网络提交带有培训请求的任务。这些任务包括训练目标、要训练的模型和训练数据。作为提交过程的一部分,提交者需要为求解者所需的估计计算量预先支付费用。 提交后,任务将分配给对模型进行实际训练的求解者。然后,求解者将已完成的任务提交给验证者,验证者负责检查训练以确保正确完成。吹哨者有责任确保验证者诚实行事。为了激励吹哨者参与网络,Gensyn 计划定期提供故意错误的证据,奖励吹哨者抓住他们。 除了为人工智能相关工作负载提供计算之外,Gensyn 的关键价值主张是其验证系统,该系统仍在开发中。为了确保 GPU 供应商的外部计算正确执行(即确保用户的模型按照他们希望的方式进行训练),验证是必要的。 Gensyn 采用独特的方法解决了这个问题,利用了称为“概率学习证明、基于图形的精确协议和 Truebit 式激励游戏”的新颖验证方法。这是一种乐观求解模式,允许验证者确认求解者已正确运行模型,而无需自己完全重新运行模型,完全重新运行模型是一个成本高昂且低效的过程。 除了其创新的验证方法之外,Gensyn 还声称相对于中心化替代方案和加密货币竞争对手而言具有成本效益,提供的 ML 训练价格比 AWS 便宜高达 80%,同时在测试方面胜过 Truebit 等类似项目。 这些初步结果是否可以在去中心化网络中大规模复制还有待观察。 Gensyn 希望利用小型数据中心、零售用户以及未来手机等小型移动设备等提供商的多余计算能力。然而,正如 Gensyn 团队自己所承认的那样,依赖异构计算提供商带来了一些新的挑战。 对于 Google Cloud Providers 和 Coreweave 等中心化供应商来说,计算成本昂贵,而计算之间的通信(带宽和延迟)却很便宜。这些系统旨在尽快实现硬件之间的通信。 Gensyn 颠覆了这一框架,通过让世界上任何人都可以提供 GPU 来降低计算成本,但同时也增加了通信成本,因为网络现在必须在相距较远的异构硬件上协调计算作业。 Gensyn 尚未推出,但它是构建去中心化机器学习训练协议时可能实现的概念证明。 去中心化通用智能 去中心化计算平台也为AI创建方法的设计提供了可能性。 Bittensor是一种基于 Substrate 构建的去中心化计算协议,试图回答“我们如何将AI转变为协作方法?”的问题。 Bittensor 旨在实现AI生成的去中心化和商品化。该协议于 2021 年推出,希望利用协作机器学习模型的力量来不断迭代并产生更好的AI。 Bittensor 从比特币中汲取灵感,其原生货币 TAO 的供应量为 2100 万,减半周期为四年(第一次减半将于 2025 年)。 Bittensor 不是使用工作量证明来生成正确的随机数并获得区块奖励,而是依赖于“智能证明”(Proof of Intelligence),要求矿工运行模型来响应推理请求而生成输出。 激励智能 Bittensor 最初依赖专家混合 (MoE) 模型来生成输出。当提交推理请求时,MoE 模型不会依赖一个广义模型,而是将推理请求转发给给定输入类型的最准确的模型。想象一下建造一栋房子,你聘请了各种专家来负责施工过程的不同方面(例如:建筑师、工程师、油漆工、建筑工人等......)。 MoE 将其应用于机器学习模型,尝试根据输入利用不同模型的输出。正如 Bittensor 创始人 Ala Shaabana所解释的那样,这就像“与一屋子聪明人交谈并获得最佳答案,而不是与一个人交谈”。由于在确保正确路由、消息同步到正确模型以及激励方面存在挑战,这种方法已被搁置,直到项目得到进一步开发。 Bittensor 网络中有两个主要参与者:验证者和矿工。验证者的任务是向矿工发送推理请求,审查他们的输出,并根据他们的响应质量对它们进行排名。为了确保他们的排名可靠,验证者会根据他们的排名与其他验证者排名的一致程度给予“vtrust”分数。验证者的 vtrust 分数越高,他们获得的 TAO 币就越多。这是为了激励验证者随着时间的推移就模型排名达成共识,因为就排名达成一致的验证者越多,他们的个人 vtrust 分数就越高。 矿工,也称为服务者,是运行实际机器学习模型的网络参与者。矿工们相互竞争,为验证者提供针对给定查询的最准确的输出,输出越准确,赚取的 TAO 就越多。矿工可以随心所欲地生成这些输出。例如,在未来的情况下,Bittensor 矿工完全有可能之前在 Gensyn 上训练过模型,并用它们来赚取 TAO 。 如今,大多数交互直接发生在验证者和矿工之间。验证者向矿工提交输入并请求输出(即训练模型)。一旦验证者查询网络上的矿工并收到他们的响应,他们就会对矿工进行排名并将其排名提交到网络。 验证者(依赖 PoS)和矿工(依赖模型证明,PoW 的一种形式)之间的这种互动被称为 Yuma 共识。它旨在激励矿工产生最佳输出来赚取 TAO ,并激励验证者对矿工输出进行准确排名,以获得更高的 vtrust 分数并增加他们的 TAO 奖励,从而形成网络的共识机制。 子网和应用程序 Bittensor 上的交互主要包括验证者向矿工提交请求并评估其输出。然而,随着贡献矿工的质量提高和网络整体智能的增长,Bittensor 将在其现有堆栈之上创建一个应用程序层,以便开发人员可以构建查询 Bittensor 网络的应用程序。 2023 年 10 月,Bittensor 通过 Revolution 升级引入了子网,朝着实现这一目标迈出了重要一步。子网是 Bittensor 上激励特定行为的单独网络。 Revolution 向任何有兴趣创建子网的人开放网络。自发布以来的几个月内,已经启动了超过32 个子网,包括用于文本提示、数据抓取、图像生成和存储的子网。随着子网的成熟并成为产品就绪,子网创建者还将创建应用程序集成,使团队能够构建查询特定子网的应用程序。一些应用程序(聊天机器人、图像生成器、推特回复机器人、预测市场)目前已经存在,但除了 Bittensor 基金会的资助之外,没有正式的激励措施让验证者接受和转发这些查询。 为了提供更清晰的说明,下面是一个示例,说明应用程序集成到网络中后 Bittensor 可能如何工作。 子网根据根网络(root network)评估的性能赚取 TAO 。根网络位于所有子网之上,本质上充当一种特殊的子网,并由 64 个最大的子网验证者按权益进行管理。根网络验证者根据子网的性能对子网进行排名,并定期将排放的TAO 代币分配给子网。通过这种方式,各个子网充当根网络的矿工。 Bittensor展望 Bittensor仍在经历成长的烦恼,因为它扩展了协议的功能以激励跨多个子网的智能生成。矿工们不断设计新的方法来攻击网络以获得更多 TAO 奖励,例如通过稍微修改其模型运行的高评价推理的输出,然后提交多个变体。影响整个网络的治理提案只能由完全由 Opentensor 基金会利益相关者组成的Triumvirate提交和实施(需要注意的是,提案需要在实施之前得到由 Bittensor 验证者组成的 Bittensor 参议院的批准)。该项目的代币经济正在进行修改,以提高对 TAO 跨子网使用的激励。该项目还因其独特的方法而迅速获得名声,最受欢迎的人工智能网站之一HuggingFace的首席执行官表示 Bittensor 应该将其资源添加到该网站。 在核心开发人员最近发表的一篇名为“Bittensor Paradigm”的文章中,该团队阐述了 Bittensor 的愿景,即最终发展为“对所测量的内容不可知”。理论上,这可以使 Bittensor 开发子网来激励所有由 TAO 支持的任何类型的行为。仍然存在相当大的实际限制——最值得注意的是,证明这些网络能够扩展以处理如此多样化的流程,并且潜在的激励措施推动的进步超过了中心化产品。 为AI模型构建去中心化计算堆栈 上述部分提供了正在开发的各种类型的去中心化AI计算协议的粗略概述。在其开发和采用的早期,它们提供了生态系统的基础,最终可以促进“AI构建块”的创建,例如 DeFi 的“货币乐高”概念。无需许可的区块链的可组合性为每个协议构建在另一个协议之上提供了可能性,以提供更全面的去中心化人工智能生态系统。 例如,这是 Akash、Gensyn 和 Bittensor 可能全部交互以响应推理请求的一种方式。 需要明确的是,这只是未来可能发生的事情的一个例子,而不是当前生态系统、现有合作伙伴关系或可能结果的代表。互操作性的限制以及下面描述的其他考虑因素极大地限制了当今的集成可能性。除此之外,流动性破碎化和使用多种代币的需要可能会损害用户体验,Akash 和 Bittensor 的创始人都指出了这一点。 其他去中心化产品 除了计算之外,还推出了其他几种去中心化基础设施服务,以支持加密货币新兴的AI生态系统。 列出所有这些超出了本报告的范围,但一些有趣且说明性的示例包括: Ocean:一个去中心化的数据市场。用户可以创建代表其数据的数据 NFT,并可以使用数据代币进行购买。用户既可以将其数据货币化,又可以对其拥有更大的主权,同时为AI团队提供开发和训练模型所需的数据的访问权限。 Grass:一个去中心化的带宽市场。用户可以将多余的带宽出售给AI公司,后者利用这些带宽从互联网上抓取数据。Grass建立在Wynd 网络之上,这不仅使个人能够将其带宽货币化,而且还为带宽购买者提供了更多样化的观点来了解个人用户在网上看到的内容(因为个人的互联网访问通常是根据其 IP 地址专门定制的) )。 HiveMapper:构建一个去中心化的地图产品,其中包含从日常汽车驾驶员收集的信息。 HiveMapper 依靠 AI 来解释从用户仪表板摄像头收集的图像,并奖励用户通过强化人类学习反馈 (RHLF) 帮助微调 AI 模型的代币。 总的来说,这些都指向探索支持AI模型的去中心化市场模型或开发它们所需的周边基础设施的几乎无限的机会。目前,这些项目大多处于概念验证阶段,需要更多的研究和开发来证明它们能够以提供全面人工智能服务所需的规模运行。 展望 去中心化计算产品仍处于开发的早期阶段。他们刚刚开始推出最先进的计算能力,能够在生产中训练最强大的AI模型。为了获得有意义的市场份额,他们需要展示与中心化替代方案相比的实际优势。更广泛采用的潜在触发因素包括: GPU 供应/需求。 GPU 的稀缺加上快速增长的计算需求正在导致 GPU 军备竞赛。由于 GPU 的限制,OpenAI 已经一度限制对其平台的访问。 Akash 和 Gensyn 等平台可以为需要高性能计算的团队提供具有成本竞争力的替代方案。对于去中心化计算提供商来说,未来 6-12 个月是一个特别独特的机会来吸引新用户,由于缺乏更广泛的市场准入,这些新用户被迫考虑去中心化产品。再加上 Meta 的 LLaMA 2 等性能日益提高的开源模型,用户在部署有效的微调模型时不再面临同样的障碍,使计算资源成为主要瓶颈。然而,平台本身的存在并不能确保足够的计算供应和消费者的相应需求。采购高端 GPU 仍然很困难,而且成本并不总是需求方的主要动机。这些平台将面临挑战,以展示使用去中心化计算选项的实际好处(无论是由于成本、审查阻力、正常运行时间和弹性还是可访问性)来积累粘性用户。他们必须快速行动。 GPU 基础设施投资和建设正在以惊人的速度进行。 监管。监管仍然是去中心化计算运动的阻力。短期内,缺乏明确的监管意味着提供商和用户都面临使用这些服务的潜在风险。如果供应商提供计算或买方在不知情的情况下从受制裁实体购买计算怎么办?用户可能会犹豫是否使用缺乏中心化实体控制和监督的去中心化平台。协议试图通过将控制纳入其平台或添加过滤器以仅访问已知的计算提供商(即提供了解你的客户KYC信息)来减轻这些担忧,但需要更强大的方法在确保合规性的同时保护隐私。短期内,我们可能会看到 KYC 和合规平台的出现,这些平台限制对其协议的访问,以解决这些问题。此外,围绕美国可能的新监管框架的讨论(最好的例子是《关于安全、可靠和值得信赖的人工智能开发和使用的行政命令》的发布)凸显了进一步限制 GPU 获取的监管行动的潜力。 审查。监管是双向的,去中心化的计算产品可以从限制AI访问的行动中受益。除了行政命令之外,OpenAI 创始人 Sam Altman 还在 国会作证,说明监管机构需要为人工智能开发颁发许可证。关于人工智能监管的讨论才刚刚开始,但任何此类限制访问或审查AI功能的尝试都可能加速不存在此类障碍的去中心化平台的采用。2023年11月OpenAI 领导层变动(或缺乏)进一步表明,将最强大的现有AI模型的决策权授予少数人是有风险的。此外,所有AI模型都必然反映了创建它们的人的偏见,无论是有意还是无意。消除这些偏差的一种方法是使模型尽可能开放地进行微调和训练,确保任何地方的任何人都可以访问各种类型和偏差的模型。 数据隐私。 当与为用户提供数据自主权的外部数据和隐私解决方案集成时,去中心化计算可能会比中心化替代方案更具吸引力。当三星意识到工程师正在使用 ChatGPT 帮助芯片设计并将敏感信息泄露给 ChatGPT 时,三星成为了这一事件的受害者。 Phala Network 和 iExec 声称为用户提供 SGX 安全飞地来保护用户数据,并且正在进行的全同态加密研究可以进一步解锁确保隐私的去中心化计算。随着AI进一步融入我们的生活,用户将更加重视能够在具有隐私保护的应用程序上运行模型。用户还需要支持数据可组合性的服务,以便他们可以将数据从一种模型无缝移植到另一种模型。 用户体验(UX)。 用户体验仍然是更广泛采用所有类型的加密应用程序和基础设施的重大障碍。这对于去中心化计算产品来说并没有什么不同,并且在某些情况下,由于开发人员需要了解加密货币和人工智能,这会加剧这种情况。需要从基础知识进行改进,例如登入抽象与区块链的交互,以提供与当前市场领导者相同的高质量输出。鉴于许多提供更便宜产品的可操作的去中心化计算协议很难获得常规使用,这一点显而易见。 智能合约和zkML 智能合约是任何区块链生态系统的核心构建块。在给定一组特定条件的情况下,它们会自动执行并减少或消除对受信任第三方的需求,从而能够创建复杂的去中心化应用程序,例如 DeFi 中的应用程序。然而,由于智能合约目前大部分存在,其功能仍然受到限制,因为它们根据必须更新的预设参数执行。 例如,部署的借贷协议智能合约包含根据特定贷款与价值比率何时清算头寸的规范。虽然在静态环境中有用,但在风险不断变化的动态情况下,这些智能合约必须不断更新以适应风险承受能力的变化,这给不通过中心化流程管理的合约带来了挑战。例如,依赖去中心化治理流程的 DAO 可能无法快速反应以应对系统性风险。 集成AI(即机器学习模型)的智能合约是增强功能、安全性和效率同时改善整体用户体验的一种可能方法。然而,这些集成也带来了额外的风险,因为不可能确保支撑这些智能合约的模型不会被攻击或解释长尾情况(鉴于数据输入的稀缺,长尾情况很难训练模型)。 零知识机器学习(zkML) 机器学习需要大量的计算来运行复杂的模型,这使得AI模型由于成本高昂而无法直接在智能合约中运行。例如,为用户提供收益优化模型的 DeFi 协议将很难在链上运行该模型,而无需支付过高的Gas费。一种解决方案是增加底层区块链的计算能力。然而,这也增加了对链验证者集的要求,可能会破坏去中心化特性。相反,一些项目正在探索使用 zkML 以无需信任的方式验证输出,而不需要密集的链上计算。 说明 zkML 有用性的一个常见示例是,用户需要其他人通过模型运行数据并验证其交易对手实际上运行了正确的模型。也许开发人员正在使用去中心化计算提供商来训练他们的模型,并担心该提供商试图通过使用输出差异几乎无法察觉的更便宜的模型来削减成本。 zkML 使计算提供商能够通过其模型运行数据,然后生成可以在链上验证的证明,以证明给定输入的模型输出是正确的。在这种情况下,模型提供者将具有额外的优势,即能够提供他们的模型,而不必透露产生输出的基础权重。 也可以做相反的事情。如果用户想要使用他们的数据运行模型,但由于隐私问题(比如在医疗检查或专有商业信息的情况下),不希望提供模型的项目访问他们的数据,那么用户可以在他们的数据上运行模型而不共享数据,然后通过证明验证他们运行了正确的模型。这些可能性通过解决令人望而却步的计算限制,极大地扩展了人工智能和智能合约功能集成的设计空间。 基础设施和工具 鉴于 zkML 领域的早期状态,开发主要集中在构建团队所需的基础设施和工具,以将其模型和输出转换为可以在链上验证的证明。这些产品尽可能地抽象了开发的零知识方面。 EZKL和Giza是通过提供机器学习模型执行的可验证证明来构建此工具的两个项目。两者都帮助团队构建机器学习模型,以确保这些模型可以在链上以可信方式验证结果的方式执行。这两个项目都使用开放神经网络交换 (ONNX) 将用 TensorFlow 和 Pytorch 等通用语言编写的机器学习模型转换为标准格式。然后,他们输出这些模型的版本,这些模型在执行时也会生成 zk 证明。 EZKL 是开源的,生产 zk-SNARKS,而 Giza 是闭源的,生产 zk-STARKS。这两个项目目前仅兼容 EVM。 过去几个月,EZKL 在增强 zkML 解决方案方面取得了重大进展,主要集中在降低成本、提高安全性和加快证明生成速度。例如,2023 年 11 月,EZKL 集成了一个新的开源 GPU 库,可将聚合证明时间缩短 35%;1 月,EZKL发布了Lilith,这是一种软件解决方案,用于在使用 EZKL 证明时集成高性能计算集群和编排并发作业系统。 Giza 的独特之处在于,除了提供用于创建可验证的机器学习模型的工具之外,他们还计划实现相当于Hugging Face的 web3 ,为 zkML 协作和模型共享开辟用户市场,并最终集成去中心化计算产品。一月份,EZKL 发布了一项基准评估,比较了 EZKL、Giza 和 RiscZero(如下所述)的性能。 EZKL 展示了更快的证明时间和内存使用。 Modulus Labs还在开发一种专为 AI 模型定制的新的 zk-proof 技术。 Modulus 发表了一篇名为《智能的成本》(The Cost of Intelligence )的论文(暗示在链上运行 AI 模型的成本极高),该论文对当时现有的 zk-proof 系统进行了基准测试,以确定改进 AI 模型 zk-proofs 的能力和瓶颈。该论文于 2023 年 1 月发布,表明现有产品过于昂贵且效率低下,无法大规模实现AI应用。在最初研究的基础上,Modulus 在 11 月推出了Remainder,这是一种专门的零知识证明器,专门用于降低 AI 模型的成本和证明时间,目标是使项目在经济上可行,将模型大规模集成到智能合约中。他们的工作是闭源的,因此无法与上述解决方案进行基准测试,但最近在 Vitalik关于加密和人工智能的博客文章中引用了他们的工作。 工具和基础设施开发对于 zkML 空间的未来增长至关重要,因为它可以显著减少需要部署运行可验证的链下计算所需的 zk 电路的团队的摩擦。创建安全接口,使从事机器学习工作的非加密原生构建者能够将他们的模型带到链上,这将使应用程序能够通过真正新颖的用例进行更大的实验。工具还解决了更广泛采用 zkML 的一个主要障碍,即缺乏知识渊博且对零知识、机器学习和密码学交叉领域工作感兴趣的开发人员。 协处理器(Coprocessors) 正在开发的其他解决方案(称为“协处理器”)包括RiscZero 、Axiom和Ritual。协处理器这个术语主要是语义上的——这些网络履行许多不同的角色,包括在链上验证链下计算。与 EZKL、Giza 和 Modulus 一样,他们的目标是完全抽象零知识证明生成过程,创建本质上能够执行链下程序并生成链上验证证明的零知识虚拟机。 RiscZero 和 Axiom 可以为简单的 AI 模型提供服务,因为它们是更通用的协处理器,而 Ritual 是专门为与 AI 模型一起使用而构建的。 Infernet是 Ritual 的第一个实例,包含一个Infernet SDK,允许开发人员向网络提交推理请求并接收输出和证明(可选)作为回报。 Infernet 节点接收这些请求并在返回输出之前处理链下计算。例如,DAO 可以创建一个流程,确保所有新的治理提案在提交之前满足某些先决条件。每次提交新提案时,治理合约都会通过 Infernet 触发推理请求,调用 DAO 特定治理训练的 AI 模型。该模型审查提案以确保提交所有必要的标准,并返回输出和证据,批准或拒绝提案的提交。 在接下来的一年里,Ritual 团队计划推出更多功能,形成称为 Ritual 超级链的基础设施层。前面讨论的许多项目都可以作为服务提供商插入 Ritual。 Ritual 团队已经与 EZKL 集成以生成证明,并且可能很快会添加其他领先提供商的功能。Ritual 上的 Infernet 节点还可以使用 Akash 或 io.net GPU 以及在 Bittensor 子网上训练的查询模型。他们的最终目标是成为开放AI基础设施的首选提供商,能够为任何网络、任何工作负载的机器学习和其他AI相关任务提供服务。 应用 zkML有助于调和区块链和人工智能之间的矛盾,前者本质上是资源受限的,而后者需要大量的计算和数据。正如 Giza 的一位创始人所说,“用例非常丰富……这有点像以太坊早期问智能合约的用例是什么……我们所做的只是扩展智能合约的用例。 ”然而,如上所述,当今的开发主要发生在工具和基础设施级别。应用仍处于探索阶段,团队面临的挑战是证明使用 zkML 实现模型所产生的价值超过了其复杂性和成本。 目前的一些应用包括: 去中心化金融。 zkML通过增强智能合约能力,升级了DeFi的设计空间。 DeFi 协议为机器学习模型提供大量可验证且不可篡改的数据,可用于生成收益获取或交易策略、风险分析、用户体验等。例如,Giza与Yearn Finance合作,为 Yearn 的新 v3 金库构建概念验证自动风险评估引擎。 Modulus Labs与Lyra Finance合作将机器学习纳入其 AMM,与 Ion Protocol合作实施分析验证者风险的模型,并帮助Upshot验证其人工智能支持的 NFT 价格信息。 NOYA(利用 EZKL)和Mozaic等协议提供了对专有链下模型的访问,这些模型使用户能够访问自动化流动性挖矿,同时使他们能够验证链上的数据输入和证明。 Spectral Finance正在构建链上信用评分引擎,以预测Compound或Aave借款人拖欠贷款的可能性。由于 zkML,这些所谓的“De-Ai-Fi”产品在未来几年可能会变得更加流行。 游戏。 长期以来,游戏一直被认为可以通过公链进行颠覆和增强。 zkML 使人工智能的链上游戏成为可能。 Modulus Labs已经实现了简单链上游戏的概念验证。 Leela vs the World是一款博弈论国际象棋游戏,用户在其中对抗 AI 国际象棋模型,zkML 验证 Leela 所做的每一步都是基于游戏运行的模型。同样,团队也使用 EZKL 框架来构建简单的歌唱比赛和链上井字游戏。 Cartridge正在使用Giza使团队能够部署完全链上游戏,最近重点引入了一款简单的人工智能驾驶游戏,用户可以竞争为试图避开障碍物的汽车创建更好的模型。虽然简单,但这些概念验证指向未来的实现,能够实现更复杂的链上验证,例如能够与游戏内经济体进行交互的复杂 NPC 演员,如《 AI Arena》中所见,这是一款超级大乱斗游戏,玩家可以在其中训练自己的战士,然后部署为AI模型进行战斗。 身份、溯源和隐私。 加密货币已经被用作验证真实性和打击越来越多的人工智能生成/操纵内容和深度伪造的手段。 zkML 可以推进这些努力。 WorldCoin 是一种身份证明解决方案,要求用户扫描虹膜以生成唯一的 ID。未来,生物识别 ID 可以使用加密存储在个人设备上进行自我托管,并使用验证本地运行的生物识别所需的模型。然后,用户可以提供生物识别证据,而无需透露自己的身份,从而在确保隐私的同时抵御女巫攻击。这也可以应用于需要隐私的其他推论,例如使用模型分析医疗数据/图像来检测疾病、验证人格并在约会应用程序中开发匹配算法,或者需要验证财务信息的保险和贷款机构。 展望 zkML 仍处于实验阶段,大多数项目都专注于构建基础设施原语和概念证明。如今的挑战包括计算成本、内存限制、模型复杂性、有限的工具和基础设施以及开发人员人才。简而言之,在 zkML 能够以消费产品所需的规模实施之前,还有相当多的工作要做。 然而,随着该领域的成熟以及这些限制的解决,zkML将成为AI和加密集成的关键组成部分。从本质上讲,zkML 承诺能够将任何规模的链下计算引入链上,同时保持与链上运行相同或接近相同的安全保证。然而,在这一愿景实现之前,该技术的早期用户将继续必须在 zkML 的隐私和安全性与替代方案的效率之间进行权衡。 AI智能体 AI和加密货币最令人兴奋的集成之一是正在进行的AI智能体实验。智能体是能够使用AI模型接收、解释和执行任务的自主机器人。这可以是任何事情,从拥有一个随时可用的根据你的偏好进行微调的个人助理,到雇用一个根据你的风险偏好来管理和调整你的投资组合的金融机器人。 由于加密货币提供了无需许可和无需信任的支付基础设施,智能体和加密货币可以很好地结合在一起。经过培训后,智能体将获得一个钱包,以便他们可以自行使用智能合约进行交易。例如,今天的简单智能体可以在互联网上抓取信息,然后根据模型在预测市场上进行交易。 智能体提供商 Morpheus是 2024 年在以太坊和 Arbitrum 上上市的最新开源智能体项目之一。其白皮书于 2023 年 9 月匿名发布,为社区的形成和构建提供了基础(包括Erik Vorhees等著名人物) 。该白皮书包括一个可下载的智能体协议,它是一个开源的LLM,可以在本地运行,由用户的钱包管理,并与智能合约交互。它使用智能合约排名来帮助智能体根据处理的交易数量等标准确定哪些智能合约可以安全地进行交互。 白皮书还提供了构建 Morpheus 网络的框架,例如使智能体协议运行所需的激励结构和基础设施。这包括激励贡献者构建用于与智能体交互的前端、供开发人员构建可插入智能体以便他们可以相互交互的应用程序的 API,以及使用户能够访问运行智能体所需的计算和存储的云解决方案在边缘设备上。该项目的初始资金已于 2 月初启动,完整协议预计将于 2024 年第二季度启动。 去中心化自治基础设施网络 (DAIN)是一种新的智能体基础设施协议,在 Solana 上构建智能体到智能体经济。 DAIN 的目标是让来自不同企业的智能体可以通过通用 API 无缝地相互交互,从而大大开放 AI 智能体的设计空间,重点是实现能够与 web2 和 web3 产品交互的智能体。一月份,DAIN 宣布与 Asset Shield 首次合作,使用户能够将“智能体签名者”添加到其多重签名中,这些签名者能够根据用户设置的规则解释交易并批准/拒绝。 Fetch.AI是最早部署的 AI 智能体协议之一,并开发了一个生态系统,用于使用 FET 代币和Fetch.AI钱包在链上构建、部署和使用智能体。该协议提供了一套用于使用智能体的全面工具和应用程序,包括用于与智能体交互和订购代理的钱包内功能。 Autonolas的创始人包括 Fetch 团队的前成员,它是一个用于创建和使用去中心化AI智能体的开放市场。 Autonolas 还为开发人员提供了一套工具来构建链下托管的AI智能体,并可以插入多个区块链,包括 Polygon、Ethereum、Gnosis Chain 和 Solana。他们目前拥有一些活跃的智能体概念验证产品,包括用于预测市场和 DAO 治理。 SingularityNet正在为AI智能体构建一个去中心化的市场,人们可以在其中部署专注的AI智能体,这些智能体可以被其他人或智能体雇用来执行复杂的任务。其他公司,如AlteredStateMachine,正在构建 AI 智能体与 NFT 的集成。用户铸造具有随机属性的 NFT,这些属性赋予他们在不同任务上的优势和劣势。然后可以对这些智能体进行训练,以增强某些属性,以用于游戏、DeFi 或作为虚拟助手并与其他用户进行交易。 总的来说,这些项目设想了一个未来的智能体生态系统,这些智能体能够协同工作,不仅可以执行任务,还可以帮助构建通用AI。真正复杂的智能体将有能力自主完成任何用户任务。例如,完全自主的智能体将能够弄清楚如何雇用另一个智能体来集成 API,然后执行,而不必确保智能体在使用之前已经与外部 API(例如旅行预订网站)集成并执行任务。从用户的角度来看,不需要检查智能体是否可以完成任务,因为智能体可以自己确定。 比特币和AI智能体 2023 年 7 月,闪电网络实验室推出了在闪电网络上使用智能体的概念验证实施方案,称为 LangChain 比特币套件。该产品特别有趣,因为它旨在解决 Web 2 世界中日益严重的问题——Web应用程序的门禁且昂贵的API 密钥。 LangChain 通过为开发人员提供一套工具来解决这个问题,使智能体能够购买、出售和持有比特币,以及查询 API 密钥和发送小额支付。在传统的支付领域,小额支付由于费用而成本高昂,而在闪电网络上,智能体可以每天以最低的费用发送无限的小额支付。当与 LangChain 的 L402 支付计量 API 框架结合使用时,这允许公司可以根据使用量的增加和减少调整其 API 的访问费用,而不是设定单一的成本过高的标准。 在未来,链上活动主要由智能体与智能体交互所主导,这样的事情将是必要的,以确保智能体能够以成本不过高的方式相互交互。这是一个早期的例子,说明如何在无需许可且经济高效的支付赛道上使用智能体,为新市场和经济互动开辟了可能性。 展望 智能体领域仍处于新生阶段。项目刚刚开始推出功能性智能体,可以使用其基础设施处理简单的任务——这通常只有经验丰富的开发人员和用户才能访问。然而,随着时间的推移,AI智能体对加密货币的最大影响之一是所有垂直领域的用户体验改进。交易将开始从基于点击转向基于文本,用户能够通过大语言模性与链上智能体进行交互。Dawn Wallet等团队已经推出了聊天机器人钱包,供用户在链上进行交互。 此外,目前尚不清楚智能体如何在 Web 2 中运作,因为金融领域依赖于受监管的银行机构,这些机构不能 24/7 运营,也无法进行无缝跨境交易。正如Lyn Alden所强调的那样,由于缺乏退款和处理微交易的能力,与信用卡相比,加密赛道尤其有吸引力。然而,如果智能体成为一种更常见的交易方式,现有的支付提供商和应用程序很可能会迅速采取行动,实施在现有金融领域运营所需的基础设施,从而削弱使用加密货币的一些好处。 目前,智能体可能仅限于确定性的加密货币交易,其中给定输入保证给定输出。这两种模型都规定了这些智能体弄清楚如何执行复杂任务的能力,而工具则扩大了它们可以完成的范围,都需要进一步开发。为了让加密智能体在新颖的链上加密用例之外变得有用,需要更广泛的集成和接受加密作为一种支付形式以及监管的明确性。然而,随着这些组件的发展,智能体准备成为上述去中心化计算和 zkML 解决方案的最大消费者之一,以自主的非确定性方式接收和解决任何任务。 结论 AI 为加密货币引入了我们在 web2 中看到的相同创新,增强了从基础设施开发到用户体验和可访问性的各个方面。然而,项目仍处于发展早期,近期加密货币和AI集成将主要由链下集成主导。 像Copilot这样的产品将使开发人员效率“提高10 倍”,Layer1和DeFi应用程序已经与微软等大公司合作推出人工智能辅助开发平台。Cub3.ai和Test Machine等公司正在开发用于智能合约审计和实时威胁监控的AI集成,以增强链上安全性。 LLM 聊天机器人正在使用链上数据、协议文档和应用程序进行培训,为用户提供增强的可访问性和用户体验。 对于真正利用加密货币底层技术的更高级集成来说,挑战仍然是证明在链上实施AI解决方案在技术上是可行的,而且在经济上也是可行的。去中心化计算、zkML 和 AI 智能体的发展指向有前景的垂直领域,这些领域为加密货币和AI深度互联的未来奠定了基础。 来源:金色财经
lg
...
金色财经
02-19 12:22
ChatGPT 周年纪念反思:AIGC的瓶颈与Web3的机遇
go
lg
...
设计)和训练时长(大部分计算硬件采购自
NVIDIA
)没有显着差异的情况下,开发领先产品主要有两条路径。 首先是识别并解决利基领域的具体痛点,这需要对目标领域有深入的理解和洞察。第二,更实际的做法是收集比竞争对手更全面的数据。 这为生成式 AI 大型模型进入 Web3 领域打开了一个绝佳的切入点。现有的人工智能大模型或基础模型是在来自各个领域的海量数据上进行训练的,而Web3中链上数据的独特性使链上数据模型成为一个令人兴奋且可行的途径。 在Web3中,数据层面目前有两种产品逻辑:第一种激励数据提供者,鼓励用户共享数据使用权,同时保护数据的隐私和所有权。海洋协议在这方面提供了有效的数据共享模型。第二种方法涉及集成数据和应用程序的项目,以便为用户提供特定于任务的服务。例如,Trusta Lab收集和分析用户的链上数据,并通过其独特的MEDIA评分系统,提供女巫账户分析、链上资产风险分析等服务。 2.3.2 AI Agent在Web3中的应用 如前所述,链上人工智能代理的应用正在蓬勃发展。借助大型语言模型并优先考虑用户隐私,他们提供可量化的链上服务。根据 OpenAI 首席人工智能研究员 Lilian Weng 的博客文章,人工智能代理可以分为四个部分:代理 = LLM(大型语言模型)+ 规划 + 内存 + 工具使用。 LLM作为AI Agent的核心,处理外部交互,从大量数据中学习,并用自然语言进行逻辑表达。规划+记忆方面类似于用于训练 AlphaGo 的强化学习技术中的行动、策略和奖励概念。 它涉及将任务分解为更小的目标,并通过重复训练和反馈来学习最优解决方案,根据功能将信息存储在各种类型的记忆中。工具使用是指智能体利用模块化工具、互联网信息检索、访问专有信息源或API等工具的能力。值得注意的是,大多数这些信息在预训练后很难修改。 考虑到AI Agent的这种逻辑,我们可以设想Web3和AI Agent结合的无限可能性。例如: 在目前的交易应用中,集成AI Agent模型可以为客户提供自然语言界面,提供包括价格预测、交易策略、止损策略、动态杠杆调整、智能跟随意见领袖、借贷等多种交易功能。 在执行量化策略时,策略可以进一步分解为子任务,分配给不同的AI Agent来执行。协作人工智能代理可以增强隐私保护并实现实时监控,以防止被对手利用。 基于区块链的游戏中的许多 NPC自然而然地与 AI 代理保持一致。已经有项目应用GPT来动态生成游戏角色对话。未来的发展可能会超越预设文本,创建更真实的实时 NPC(甚至数字人)交互,并且独立于玩家干预进行操作。斯坦福大学的“虚拟小镇”就是此类应用的一个很好的例子。 尽管目前的Web3+AI Agent项目主要集中在初级市场或AI基础设施,尚未出现杀手级消费应用程序,但改变游戏规则的Web3+AI项目的潜力是巨大的。通过集成分布式链上治理、零知识证明推理、模型分布和改进的可解释性等各种区块链特性,这些项目在未来具有广阔的前景。 2.3.3 Web3+AI潜在垂直领域应用 A. 教育领域的应用 Web3 和人工智能的融合预示着教育领域的一场革命,其中生成式虚拟现实教室是一项值得注意的创新。将人工智能技术嵌入在线学习平台,学生可以获得个性化的学习体验。该系统根据每个学生的学习历史和兴趣生成定制的教育内容。这种个性化的方法有望提高学生的学习动机和效率,使教育更加个性化。 此外,基于代币的信用激励代表了教育领域的创新实践。利用区块链技术,学生的学分和成绩可以编码成代币,形成数字化的学分体系。这种激励机制鼓励积极参与学习活动,创造一个更具吸引力和激励性的学习环境。 受最近流行的SocialFi项目FriendTech的启发,类似的关键定价逻辑可以应用于在学生之间建立同行评审系统,为教育添加更多社交元素。利用区块链的不可篡改性,同行评价变得更加公平和透明。这种同行评审机制不仅有利于培养学生的团队合作能力,而且可以对学生的表现进行更全面、多维度的评估,将多元化、整体性的评价方式引入教育体系。 B. 在医疗领域的应用 在医疗领域,Web3与AI的融合推进了联邦学习和分布式推理。通过将分布式计算与机器学习相结合,医疗专业人员可以大规模共享数据,从而实现更深入、更全面的群体学习。这种集体智慧方法可以加速疾病诊断和治疗计划的制定,推动医学领域的进步。 隐私保护也是医疗领域应用的一个重要方面。借助Web3的去中心化和区块链的不变性,患者医疗数据可以更安全地存储和传输。智能合约可以实现对医疗数据的精确控制和权限管理,确保只有授权人员才能访问敏感的患者信息,从而维护医疗数据的隐私。 C. 保险领域的应用 在保险行业,Web3与AI的融合有望为传统运营带来更加高效、智能的解决方案。例如,在汽车和房屋保险中,计算机视觉技术的应用帮助保险公司通过图像分析和评估更有效地评估财产价值和风险水平。这为保险公司提供了更加精细化、个性化的定价策略,增强了保险行业的风险管理。 同时,链上自动化索赔处理是保险行业的一项创新进步。利用智能合约和区块链技术,索赔流程变得更加透明和高效,减少了繁琐的程序和人为干预的可能性。这不仅加快了理赔流程,还降低了运营成本,为保险公司和客户提供更好的体验。 动态保费调整是另一个创新领域。通过实时数据分析和机器学习算法,保险公司可以更加精准、及时地调整保费,根据被保险人的实际风险状况进行个性化定价。这种做法不仅使保费更加公平,而且鼓励被保险人采取更健康、更安全的行为,促进全社会的风险管理和预防措施。 D. 版权领域的应用 在版权领域,Web3 和人工智能的结合为数字内容创建、管理和代码开发引入了新的范式。通过智能合约和去中心化存储,数字内容的版权信息可以得到更好的保护,让创作者更轻松地追踪和管理自己的知识产权。区块链技术还可以建立透明且不可变的创作记录,为追踪和验证作品提供更可靠的手段。 工作模式的创新也代表着版权领域的重大转变。代币激励的协作工作将工作贡献与代币奖励相结合,鼓励创作者、策展人和开发者共同参与项目。这不仅促进了创意团队之间的协作,也让参与者有机会直接从项目的成功中受益,从而催生更多优秀作品。 另一方面,使用代币作为版权证明重塑了利益分配模式。通过智能合约自动执行的分红机制,作品的所有参与者都可以在作品被使用、出售或转让时实时获得自己的收益份额。这种去中心化的利益分配模式有效解决了传统版权模式中的不透明和延迟问题,为创作者提供了更加公平、高效的利益分配机制。 E. 虚拟宇宙领域的应用 在元宇宙中,Web3与AI的融合为创建低成本AIGC以丰富基于区块链的游戏内容开辟了新的可能性。AI生成的虚拟环境和角色可以丰富游戏内容,为用户提供更加生动多样的体验,同时减少制作的人力和时间成本。 创建生动的数字人是元宇宙应用的创新。数字人类具有细到头发的详细物理外观和 基于大型语言模型构建的心理逻辑,可以在元宇宙中扮演各种角色。他们可以与用户交互,甚至参与现实世界场景的数字孪生。这为虚拟现实提供了更加真实、深刻的体验,推动数字人技术在娱乐、教育等领域的广泛应用。 基于区块链用户画像自动生成广告内容是元宇宙中的智能广告应用。通过分析用户在元宇宙中的行为和偏好,人工智能算法可以创建更加个性化和有吸引力的广告,从而提高点击率和用户参与度。这种广告创作方式不仅更符合用户兴趣,也为广告主提供了更高效的推广渠道。 生成式交互式 NFT是元宇宙中一项引人注目的技术。通过将NFT与生成设计相结合,用户可以在元宇宙中参与创作自己的NFT艺术品,赋予其互动性和独特性。这为数字资产的创造和交易开辟了新的可能性,推动了虚拟宇宙中数字艺术和虚拟经济的发展。 三.签名 Web3 协议 在本节中,作者选择了五个具有代表性的协议来深入了解 Web3 领域中生成式 AI 的现状:Render Network和Akash Network被强调为通用 AI 基础设施协议和 Web3 中 AI 类别的领先者;Bittensor被认定为当前模型训练领域的热门项目;Alethea.ai因其与生成式 AI 应用程序的密切相关性而被选中;Fetch.ai展示了人工智能代理在去中心化Web3世界中的潜力。 3.1 渲染网络($RNDR) Render Network 由母公司 OTOY 的创始人 Jules Urbach 于 2017 年创立。OTOY 的核心业务是基于云的图形渲染,由 Google 和 Mozilla 联合创始人提供建议,为奥斯卡获奖电影项目做出了贡献,并与 Apple 进行了项目合作。 Render Network 是 OTOY 进军 Web3 领域的举措,旨在利用区块链的分布式特性,将小规模渲染和人工智能需求与去中心化资源连接起来。这一举措旨在为小型工作室节省成本,否则这些小型工作室将租用昂贵的集中式计算资源(例如AWS、MS Azure和阿里云),并为那些拥有闲置计算资源的人提供创收机会。 在发布专有渲染器 Octane Render 的 OTOY 的支持下,Render Network 凭借固有的需求和扎实的商业模式推出,很快被认为是一个具有坚实基础和潜力的 Web3 项目。 随着生成式AI的兴起,分布式验证和推理任务的需求不断增加,与Render的技术架构完美契合,使其成为未来发展的一个有希望的方向。Render 一直引领着 Web3 领域的 AI 赛道,演变成一个有点像 meme 的实体,每当围绕 AI、元宇宙和分布式计算的叙述升温时,它都会受益于上升趋势,展示了它的多功能性。 2023 年 2 月,Render Network 宣布了更新其定价等级系统的路线图,并为 $RNDR 引入了社区投票的价格稳定机制(尽管发布日期尚未公布)。该项目还宣布从 Polygon 迁移到 Solana(将 $RNDR 代币升级为基于 Solana SPL 的 $RENDER 代币,已于 2023 年 11 月完成)。 渲染网络的新定价体系将链上服务分为三个级别,从高到低,每个级别对应不同的价格点和渲染服务质量。这些层根据客户的特定渲染需求为客户提供选择。 社区投票的$RNDR价格稳定机制已从不定期回购转变为“销毁和铸币均衡(BME)”模式。这一变化强调 $RNDR 作为交易的稳定币,而不是长期持有资产。一个BME Epoch的具体业务流程如下: 产品创建:Render上的产品创建者,即渲染资源的提供者,将闲置的渲染资源打包成产品(节点)并上线,等待使用。 购买产品:有渲染需求的客户可以直接销毁$RNDR代币作为服务费用。如果他们没有 $RNDR 代币,他们首先用法定货币在 DEX 上购买它们,然后销毁代币。服务支付的价格公开记录在区块链上。 铸造代币:根据预设规则铸造新代币。 注:Render Network 收取产品购买者支付的项目运营交易费用的 5%。 在每个 BME Epoch 中,都会铸造预设数量的新代币(数量会随着时间的推移而减少)。这些新代币被分发给三方: 产品创造者:他们获得的奖励是: A。任务完成:根据各产品节点完成的渲染任务数量进行奖励。 b. 在线奖励:鼓励资源提供者在线完成任务,根据市场待机时间给予奖励。 2. 产品购买者:与购物中心的产品优惠券返还类似,购买者可以获得高达 100% 的 $RNDR 代币返还,鼓励未来使用 Render Network。 3. DEX 流动性提供商:合作 DEX 中的提供商,确保以合理的价格提供 $RNDR 代币以进行必要的销毁,将根据质押的 $RNDR 数量获得奖励。 从过去一年$RNDR的价格走势来看,作为Web3中领先的AI赛道项目,$RNDR受益于ChatGPT在2022年底和2023年初带动的AI热潮。随着新代币机制的引入,$RNDR的价格2023年上半年达到顶峰。 经过一段时间的稳定后,随着 OpenAI 新版本引发的 AI 复苏、Render Network 向 Solana 的迁移以及新代币机制的预期实施,$RNDR 的价格达到了近期高点。鉴于 $RNDR 的基本面变化很小,未来对 $RNDR 的投资需要谨慎的头寸管理和风险控制。 Dune Analytics仪表板的数据表明,自2023年初以来,渲染任务总数有所增加,但渲染节点数量并未增加。这表明导致工作负载增加的新用户是那些有渲染需求的用户,而不是那些提供渲染资源的用户。 鉴于生成式 AI 到 2022 年底将激增,有理由推断额外的渲染任务与生成式 AI 应用程序相关。这种需求的增加是代表长期趋势还是暂时的激增还有待观察,需要进一步观察。 3.2 Akash Network($AKT) Akash Network 是一个去中心化的云计算平台,旨在为开发者和企业提供更灵活、高效、更具成本效益的云计算解决方案。 该项目的“超级云”平台基于分布式区块链技术,利用区块链去中心化的特性,为用户提供全球性、去中心化的云基础设施,包括CPU、GPU、存储等多样化的计算资源。 Akash Network 由拥有丰富项目背景、经验丰富的企业家 Greg Osuri 和 Adam Bozanich 创立,其使命很明确:降低云计算成本、提高可用性并让用户更好地控制计算资源。通过激励提供商通过竞价流程开放闲置计算资源,Akash Network 实现了更有效的资源利用,为资源需求者提供有竞争力的价格。 2023 年 1 月,Akash Network 启动了 Akash Network Economics 2.0 更新,以解决当前代币经济中的各种缺陷,包括: $AKT 市场价格的波动导致长期合同价格和价值的不匹配。 对资源提供者释放大量算力的激励不足。 社区激励措施不足阻碍了项目的长期发展。 $AKT 的价值捕获不足对项目稳定性构成风险。 据官网介绍,Akash网络经济2.0计划中提出的解决方案包括引入稳定币支付、增加订单费用以增加协议收入、增强对资源提供者的激励以及增加社区激励等。值得注意的是,稳定币支付功能和订单费用功能已经实现。 作为 Akash 网络的原生代币,$AKT 在协议中具有多种用途,包括用于验证(安全)、激励、网络治理和支付交易费用的质押。据官网显示,$AKT 的总供应量上限为 3.88 亿枚,截至 2023 年 11 月,已解锁约 2.29 亿枚(59%)。项目启动时分配的创世代币于2023年3月完全解锁并进入二级市场。创世代币的分配如下: 关于价值获取,白皮书中提到的一个值得注意的尚未实施的功能是 Akash 计划对每一次成功的租赁收取“费用”。这些费用将被发送到收入池以分配给持有人。 该计划规定对 AKT 交易收取 10% 的费用,对使用其他加密货币的交易收取 20% 的费用。此外,Akash 打算奖励长期锁定 AKT 持有量的持有者,从而激励长期投资。 CoinGecko 的价格趋势显示,$AKT 在 2023 年 8 月中旬和 11 月下旬经历了上涨,尽管涨幅不如人工智能领域的其他项目,这可能是由于当前的市场情绪所致。 总体而言,Akash Network 是 AI 赛道上为数不多的优质项目之一,其基本面优于大多数竞争对手。其潜在的业务收入可以为该协议带来未来的盈利能力,随着人工智能行业的发展和对云计算资源的需求不断增加,Akash Network 有望在下一波人工智能浪潮中取得重大进展。 3.3 Bittensor($TAO) 对于那些熟悉 $BTC 技术架构的人来说,理解 Bittensor 的设计非常简单。事实上,在设计 Bittensor 时,其创建者从加密货币先驱 $BTC 的几个特征中汲取了灵感。 其中包括总代币供应量为 2100 万枚,大约每四年产量减半,并涉及工作量证明 (PoW) 共识机制等。 为了将其概念化,想象一下最初的比特币生产过程,然后用训练和验证人工智能模型来取代计算密集型的“挖矿”过程,该过程不会创造现实世界的价值。矿工根据人工智能模型的性能和可靠性获得激励。这形成了 Bittensor ($TAO) 项目架构的简单总结。 Bittensor 由人工智能研究人员 Jacob Steeves 和 Ala Shaabana 于 2019 年根据神秘作者 Yuma Rao 撰写的白皮书成立。简而言之,它是一个开源、无需许可的协议,创建了一个由许多子网络连接的网络架构,每个子网络负责不同的任务(机器翻译、图像识别和生成、大型语言模型等)。优秀的任务完成会受到奖励,并且子网络可以相互交互和学习。 就目前主要的人工智能模型而言,都是科技巨头大量计算资源和数据投资的结果。这些AI产品表现出色的同时,这种方式也带来了很高的中心化风险。 Bittensor 的基础架构允许交流专家网络进行交互和相互学习,为大规模模型的去中心化训练奠定了基础。Bittensor 的长期愿景是与 OpenAI、Meta 和 Google 等巨头的闭源模型竞争,保持去中心化特征,同时渴望与它们的推理性能相匹配。 Bittensor的技术核心是Yuma Rao独特设计的共识机制,也称为Yuma Consensus,它混合了PoW和Proof of Stake(PoS)的元素。供应方主要涉及“服务器”(矿工)和“验证者”(验证者),而需求方则由使用网络中模型的“客户端”(客户)组成。流程如下: 客户端将请求和数据发送给验证器进行处理。 验证者将数据分发给特定子网下的矿工。 矿工使用他们的模型和接收到的数据进行推理并返回结果。 验证者按质量对推理结果进行排名,并记录在区块链上。 最好的推理结果返回给客户端,矿工和验证者根据排名和工作量获得奖励。 值得注意的是,Bittensor 本身并不在大多数子网络中训练任何模型;它更像是模型提供者和用户之间的纽带,通过较小模型之间的交互进一步提高各种任务的性能。目前,在线有(或已经有)30个子网络,每个子网络对应不同的任务模型。 $TAO 作为 Bittensor 的原生代币,在创建子网络、在子网络中注册、支付服务费用以及向生态系统内的验证者质押方面发挥着至关重要的作用。效仿 BTC 的精神,$TAO 选择公平发布,这意味着所有代币都是通过对网络的贡献生成的。 目前,$TAO 的日产量约为 7,200 个代币,均匀分配给矿工和验证者。自项目启动以来,已生产了 2100 万枚代币中的约 26.3%,其中 87.21% 用于质押和验证。该项目还遵循 BTC 大约每四年产量减半的模式,下一次减半计划将于 2025 年 9 月 20 日举行,预计将成为重要的价格驱动因素。 从 2023 年 10 月下旬开始,$TAO 的价格趋势出现大幅上涨,这主要是受到 OpenAI 会议之后新一波人工智能热情以及资本转向人工智能领域的推动。 $TAO作为Web3+AI赛道的新项目的出现,其品质、长远的愿景也吸引了投资。但必须承认,与其他AI项目一样,Web3+AI的结合虽然潜力巨大,但尚未在实际业务中找到支撑长期盈利项目的应用。 3.4 Alethea.ai($OR) Alethea.ai 成立于 2020 年,是一个致力于利用区块链技术为生成内容带来去中心化所有权和治理的项目。 Alethea.ai 的创始人相信,生成式人工智能将带领我们进入一个由生成式内容引起的信息冗余时代,在这个时代,通过简单的复制粘贴或单击即可轻松复制或生成大量数字内容,但原创者很难获得利益。通过将区块链原语(例如 NFT)与生成式人工智能连接起来,他们的目标是确保生成式人工智能及其内容的所有权,并在此之上进行社区治理。 在这一理念的推动下,Alethea.ai最初推出了新的NFT标准iNFT,它利用Intelligence Pods将AI动画、语音合成甚至生成式AI嵌入到图像中。Alethea.ai 还与艺术家合作,利用他们的艺术品创建 iNFT,其中一件在苏富比拍卖会上以 478,000 美元的价格售出。 Alethea.ai 随后推出了 AI 协议,允许任何生成式 AI 开发者或创作者无需许可即可使用 iNFT 标准进行创作。为了展示 AI 协议,Alethea.ai 开发了 CharacterGPT,这是一种基于 GPT 等大型模型理论的工具,用于创建交互式 NFT。最近,他们发布了 Open Fusion,使得任何 ERC-721 NFT 都可以与 Intelligence 结合并发布在 AI 协议上。 Alethea.ai 的原生代币是 $ALI,它有四个主要用途: 锁定一定数量的$ALI来创建iNFT。 锁定的 $ALI 越多,情报舱的级别就越高。 $ALI 持有者参与社区治理。 $ALI 作为 iNFT 之间交互的凭证(尚无实际用例)。 从 $ALI 的用例来看,很明显,代币的价值捕获仍然主要基于叙述。过去一年的代币价格趋势证实了这一点:$ALI 受益于 ChatGPT 自 2022 年 12 月开始引领的生成式 AI 热潮。此外,当 Alethea.ai 在 6 月宣布新的 Open Fusion 功能时,引发了价格飙升。然而,除了这些情况之外,$ALI 的价格一直呈下降趋势,甚至没有像类似项目那样对 2023 年底人工智能炒作做出反应。 除了原生代币之外,Alethea.ai 的 NFT 项目(包括其官方集合)在 NFT 市场的表现也值得关注。 根据 Dune 仪表板的数据,第三方销售的 Intelligence Pods 和 Alethea.ai 的第一方 Revenants 系列在首次发布后逐渐淡出了人们的视线。作者认为,主要原因是最初的新颖性逐渐减弱,没有实质性的价值或社区参与来留住用户。 3.5 Fetch.ai($FET) Fetch.ai 是一个致力于促进人工智能 (AI) 与区块链技术融合的项目。其目标是通过结合机器学习、区块链和分布式账本技术来构建去中心化的智能经济,以支持智能代理之间的经济活动。 Fetch.ai 由英国科学家 Humayun Sheikh、Toby Simpson 和 Thomas Hain 于 2019 年创立,其创始团队拥有令人印象深刻的背景。 Humayun Sheikh 是 DeepMind 的早期投资者,Toby Simpson 曾在多家公司担任高管职务,Thomas Hain 是谢菲尔德大学人工智能领域的教授。创始人的多元化经历横跨传统IT公司、区块链明星项目、医疗、超级计算领域,为Fetch.ai提供了丰富的行业资源。 Fetch.ai的使命是建立一个由自治经济代理(AEA)和人工智能应用程序组成的去中心化网络平台,使开发人员能够通过创建自治代理来完成预设的目标导向的任务。该平台的核心技术是其独特的三层架构: 底层:基于 PoS-uD(无许可权益证明)共识机制,该基础层支持智能合约网络,促进矿工协作以及基本的机器学习训练和推理。 中间层:开放经济框架(OEF)为AEA之间交互和底层协议提供共享空间,支持AEA之间的搜索、发现和交易。 顶层:AEA 是 Fetch.ai 的核心组件。每个AEA都是一个智能代理软件,能够通过技能模块执行各种功能,执行用户预定义的任务。这些代理并不直接在区块链上运行,而是通过 OEF 与区块链和智能合约进行交互。智能代理软件可以纯粹基于软件,也可以绑定到智能手机、计算机和汽车等物理硬件。Fetch.ai 提供基于 Python 的开发套件 AEA 框架,该框架是模块化的,使开发人员能够构建他们的智能代理。 在此架构之上,Fetch.ai 推出了 Co-Learn(智能体之间共享机器学习模型)和 Metaverse(智能体云托管服务)等后续产品和服务,以支持用户在其平台上开发智能体。 关于代币,$FET 作为 Fetch.ai 的原生代币,涵盖了支付 Gas、验证质押以及在网络内购买服务等标准功能。超过90%的$FET代币已解锁,具体分配如下: 自成立以来,Fetch.ai 经历了多轮代币稀释融资,最近一次是 2023 年 3 月 29 日从 DWF Lab 获得的 3000 万美元投资。鉴于 $FET 代币不能从项目收入中获取价值,其价格动能主要依赖于项目更新和市场对人工智能领域的情绪。事实上,在两次人工智能市场繁荣的浪潮中,Fetch.ai 的价格在 2023 年初和年底经历了超过 100% 的飙升。 Fetch.ai 的发展轨迹更像是一家 Web2.0 人工智能初创公司,重点是完善其技术。它通过持续的筹款和广泛的合作寻求认可和盈利。 这种方法为未来在 Fetch.ai 上开发的应用程序留下了充足的空间,但也意味着它可能对其他区块链项目没有那么大的吸引力,从而可能限制生态系统的活力。Fetch.ai 的一位创始人甚至尝试基于 Fetch.ai 推出一个 DEX 项目 Mettalex DEX,但最终以失败告终。作为一个专注于基础设施的项目,生态系统的衰弱也阻碍了 Fetch.ai 内在价值的增长。 四.生成式人工智能的美好未来
NVIDIA
首席执行官黄仁勋将生成大型模型的推出比作人工智能的“iPhone时刻”,表明人工智能角色的关键转变,高性能计算芯片成为人工智能稀缺资源的核心。 锁定Web3 AI子赛道大部分资金的AI基础设施项目仍然是投资者长期关注的焦点。随着芯片巨头逐渐升级计算能力,AI的能力将会扩展,很可能在Web3中催生更多的AI基础设施项目,甚至可能是专门为Web3中的AI训练而设计的芯片。 虽然以消费者为中心的生成式人工智能产品仍处于实验阶段,但一些工业级应用已经显示出巨大的潜力。其中一种应用是将现实世界场景转移到数字领域的“数字孪生” 。 考虑到工业数据中尚未开发的价值,
NVIDIA
的元宇宙数字孪生平台将生成式 AI 定位为工业数字孪生的重要组成部分。在Web3中,包括虚拟世界、数字内容创作和现实世界资产,受人工智能影响的数字孪生将发挥重要作用。 新型交互硬件的开发也至关重要。从历史上看,计算领域的每一次硬件创新都带来了革命性的变化和机遇,比如现在无处不在的电脑鼠标或 iPhone 4 的多点触控电容屏。 Apple Vision Pro宣布将于 2024 年第一季度发布,以其令人印象深刻的演示吸引了全球关注,有望为各行业带来意想不到的变化和机遇。以快速内容制作和广泛传播而闻名的娱乐行业往往首先受益于硬件更新。这其中包括Web3的元宇宙、区块链游戏、NFT等,都是值得长期关注和研究的。 从长远来看,生成式人工智能的发展代表着量变导致质变。ChatGPT 的核心是推理问答这一长期研究的学术问题的解决方案。只有通过扩展数据和模型迭代,才达到了 GPT-4 令人印象深刻的水平。Web3中的AI应用也类似,目前正处于Web2模型适应Web3的阶段。完全基于 Web3 数据的模型尚未出现。未来富有远见的项目和致力于研究 Web3 特定问题的大量资源将为 Web3 带来自己的 ChatGPT 级杀手级应用程序。 生成式人工智能的技术基础还有很多有前景的探索途径,比如思想链技术。这项技术允许大型语言模型在多步推理方面取得重大飞跃。然而,它也凸显甚至加剧了大型模型在复杂逻辑推理方面的局限性。有兴趣的读者可以探索原作者关于Chain-of-Thought的论文。 ChatGPT之后,Web3中出现了各种以GPT为主题的项目,但简单地将GPT与智能合约结合起来并不能满足用户需求。ChatGPT 发布大约一年后,未来仍然拥有巨大的潜力。未来的产品应该从Web3用户的真实需求出发。随着Web3技术的日益成熟,生成式AI在Web3中的应用必将是广阔而令人兴奋的。 来源:金色财经
lg
...
金色财经
02-18 21:42
海外AI再度加速!OpenAI、
NVIDIA
、微软、Google动作频频,AI基础设施需求旺盛
go
lg
...
远超过了目前的建设计划。” 2月9日,
NVIDIA
宣布成立新部门,专注为云计算等公司设计定制芯片。新的
NVIDIA
部门将由Dina McKinney领导。McKinney曾担任负责AMD CPU 设计和Marvell基础设施处理器的副总裁,他将负责监督为云计算、5G 电信、游戏、汽车等领域构建定制芯片的团队。 2月9日,微软内部正开发代号为Deucalion的新版Copilot,针对员工办公需求提供更丰富、更强大的功能。微软已经在员工团队中推广普及Microsoft 365 Copilot。 2月16日,OpenAI发布了Sora大模型,可根据用户指令生成1分钟的高清视频,能生成具有多个角色、包含特定运动的复杂场景,即能够理解和模拟运动中的物理世界。OpenAI 已经邀请了一支专业的创意人士测试,用于反馈其在专业环境中的实用性。 2月16日,Google宣布推出全新的Gemini 1.5 AI模型,采用MOE架构,可以处理128000个token的标准情境窗口。 Sora令影视业倍感惶恐? 北京时间2月16日凌晨,没有任何预告,全球明星AI创业公司OpenAI发布了文生视频模型Sora,首次由AI生成了长达1分钟的多镜头长视频,其对于真实人类世界的高模拟度画面、精细的画质、多镜头拍摄、多角度运镜,表明AI对人类世界的理解、AI生成的创造性内容又上了新台阶。 国泰君安研报指出,Sora具有三大突出亮点,一是60秒长视频,Sora可以保持视频主体与背景的高度流畅性与稳定性。二是单视频多角度镜头,Sora在一个视频内实现多角度镜头,分镜切换符合逻辑且十分流畅。三是理解真实世界的能力,Sora对于光影反射、运动方式、镜头移动等细节处理得十分优秀,极大地提升了真实感。 与目前AI视频赛道同行相比,Sora每条提示60秒的视频长度,远高于Pika Labs的3秒、Meta Emu Video的4秒和Runway公司Gen-2的18秒的视频时长。 2月16日,360创始人周鸿祎发布微博提到自己对Sora的看法,周鸿祎认为,Sora的诞生意味着AGI(通用人工智能)实现可能从10年缩短至一两年。 周鸿祎认为,科技竞争最终比拼的是让人才密度和深厚积累,“很多人说Sora的效果吊打Pika和Runway。这很正常,和创业者团队比,OpenAl这种有核心技术的公司实力还是非常强劲的。有人认为有了AI以后创业公司只需要做个体户就行,实际今天再次证明这种想法是非常可笑的。” 中国香港青年导演朱智立告诉蓝鲸财经,“它(Sora)对电影行业的影响只是一个时间问题,因为它已经把画面做到非常真实、有细节,包括一个女人在东京街头的画面,连脸上的雀斑都能做到非常真实。” 周鸿祎认为,机器能生产一个好视频,但视频的主题、脚本和分镜头策划、台词的配合,都需要人的创意,至少需要人给提示词。一个视频或者电影是由无数个60秒组成的。今天Sora可能给广告业、电影预告片、短视频行业带来巨大的颠覆,但它不一定那么快击败TikTok,更可能成为TikTok的创作工具。 AI基础设施需求旺盛 市场观点认为,2022年是影像之年,2023是声波之年,而2024是视频之年。OpenAI表示,Sora是构建世界模型的基础,未来将向实现AGI继续迈进。 中信证券表示,多模态大模型算法的突破将带来自动驾驶、机器人等技术的革命性进步,持续看好本轮生成式AI浪潮对科技产业的长周期影响和改变,继续关注算力、算法、数据、应用等环节的领先厂商。 东吴证券判断,多模态是AI商业宏图的起点,有望真正为企业降本增效,且企业可将节省下来的成本用于提高产品、服务质量或者技术创新,推动生产力进一步提升;同时,也可能出现新的、空间更大的用户生成内容平台。 对于Sora的发展,算力需求旺盛。国泰君安指出,Sora模型推动AI多模态领域飞跃式发展,AI创作等相关领域将迎来深度变革,AI赋能范围进一步扩大,多模态相关的训练及推理应用也将进一步提升对算力基础设施的相关需求。 无独有偶,国盛证券也持有相同的观点,其认为,Sora依旧符合AI缩尺律(Scaling Law)OpenAI在技术文档中说明,随着训练计算量的增加,样本质量明显提高,进一步佐证了多模态时代,算力需求将成为最核心的瓶颈之一。 多模态大模型拉动全球算力需求快速增长,国产AI算力迎来机会。根据南方财富网趋势选股系统数据统计,A股国产AI算力相关上市企业目前数量有52家,如国产AI算力产业链包含AI服务器零部件、服务器整机、算力租赁、数据中心等环节。AI服务器零部件公司主要包括海光信息、寒武纪、龙芯中科、景嘉微等;服务器整机公司主要包括高新发展、神州数码、拓维信息、广电运通、烽火通信、同方股份等;算力租赁公司主要包括恒润股份、云赛智联、鸿博股份等;数据中心公司主要包括奥飞数据、光环新网、宝信软件、数据港等。 天风证券发布研究报告称,对比海外,看好国内大企业深度使用大模型赋能旗下应用,也看好未来算力继续高增长,建议关注AI多模态、AI应用及华为链+三条主线。 (1)AI多模态:万兴科技(300624.SZ)、美图公司(01357)(与海外组联合覆盖)、易点天下(301171.SZ)、焦点科技(002315.SZ)、当虹科技(688039.SH); (2)AI应用:金山办公(688111.SH)、科大讯飞(002230.SZ)、恒生电子(600570.SH)、鼎捷软件(300378.SZ)、福昕软件(688095.SH)、用友网络(600588.SH)、金蝶国际(00268)、泛微网络(603039.SH)、致远互联(688369.SH); (3)华为链+:海光信息(688041.SH)、寒武纪(688256.SH)、云天励飞(688343.SH)、景嘉微(300474.SZ)(电子组联合覆盖)。(综合投资者网、蓝鲸财经、券商研报)
lg
...
金融界
02-18 09:02
一家1000亿“新独角兽”将问世?日本软银向英伟达下战帖 筹资争夺AI芯片大饼
go
lg
...
美元资助一家芯片合资企业,以与英伟达(
NVIDIA
)竞争,并供应人工智能(AI)必需的半导体芯片。该项目代号为“伊邪那岐”(Izanagi),标志着这位亿万富翁在软银大幅削减初创公司投资之际的下一个重大尝试。 彭博社引述知情人士表示,孙正义设想创建一家公司,能够与芯片设计部门安谋(Arm Holdings Plc)形成互补,并让这位亿万富翁能够打造一家AI芯片巨头。其中一位知情人士透露,在考虑的一种情况下,软银将提供300亿美元,其中700亿美元可能来自中东机构。#AI热潮# (来源:Bloomberg) 报道提到,如果他成功,该芯片项目将成为自AI聊天机器人ChatGPT出现以来,该领域最大的投资之一,使微软公司最近对OpenAI超过100亿美元的押注相形见绌。 知情人士指出,孙正义以日本创造与生命之神“伊邪那岐”来命名该项目,部分原因是其中包含通用AI的缩写。孙正义多年来一直在他的演讲中预言通用AI的到来,他表示,一个充满比人类更聪明的机器的世界将更加安全、健康和幸福。 知情人士表示,该项目如何资助或资金将花在哪里的细节尚未确定,该项目可能会进一步发展。他们也说,孙正义不断尝试多种投资想法和策略,以加强安谋在AI市场的影响力,并一直在探索不同类型的下一代芯片。 目前尚不清楚哪家或哪家公司将在开发挑战英伟达所需的技术方面发挥核心作用,英伟达是迄今为止高端AI加速器领域的领导者。 在创业投资遭遇一系列严重挫折后,孙正义将精力集中在安谋上。知情人士称,这位企业家看到了创建一家与美国科技7巨头(Magnificent Seven)同一水平的独角兽公司机会。 截至2023年12月31日,软银拥有6.2万亿日元,约合410亿美元的现金和现金等价物,这得益于全球股市的反弹。其资产负债表因T-Mobile US Inc.股票的意外收入,以及该公司持有的安谋90%股份而得到提振,仅在过去一周,安谋的市值就增加了约500亿美元。 知情人士称,尽管孙正义和OpenAI的阿尔特曼(Sam Altman)就半导体制造领域的联手和融资事宜进行了会谈,但目前形式的“伊邪那岐”项目与阿尔特曼的野心是分开的。 一位知情人士提到,孙正义曾试图投资另一家开发基础AI模型的公司,并请求该公司的领导者帮助开展芯片业务,但他们拒绝了。 除了孙正义对AI相关投资的追求之外,软银还一直在探索使用安谋芯片设计的方法。知情人士称,作为软银董事会成员和技术专家,安谋首席执行官雷内·哈斯(Rene Haas)正在为孙正义就该项目提供建议。 在最近受访时,哈斯被问及在帮助孙正义实现AI愿望方面所扮演的角色。哈斯回应称:“当你想到通用AI以及在计算、能效、能源方面实现这一目标所需的条件时,这些都是我们需要参与和关注的重要领域。” 作为安谋首席执行官,而不是软银董事,孙正义直接领导伊邪那吉计划。这位亿万富翁此前精心策划了软银愿景基金的创建,该基金最初是一个获得中东支持的1000亿美元项目,代表着全球最大的科技投资池之一。 但在过去18个月里,该部门的投资规模已放缓。 与这位企业家共事过的人士表示,孙正义以突然改变主意而闻名,在与他的会面中,人们提到了许多名字和技术。 然而,孙正义对通用AI的热情始终坚定不移。2023年10月,他告诉一大批日本企业客户采用AI,否则就会落后。 “通用AI是每个AI专家所追求的目标,”孙正义解释说。“但是当你问他们详细的定义、数字、时间、计算能力、通用AI比人类智能聪明多少时,他们大多数人都没有答案。” “我有自己的答案,我相信通用AI将在10年内成为现实,”他说。
lg
...
秉哥说市
02-17 17:16
不连网也能用AI?英伟达推出 Chat with RTX 聊天机械人
go
lg
...
许也不能错过。 人工智能领航者英伟达(
NVIDIA
)日前推出了个人化 AI 聊天机械人Chat with RTX,用户可以不连接网络,就能够将自己的文件、笔记等资料连接大语言模型(LLM)。英伟达官方表示,Chat with RTX 所有操作均在Windows RTX PC或工作站上本地运行,因此非常安全。#AI热潮# (图片来源:Chat with RTX官方页面) 用户可利用Chat With RTX使用检索增强生成 (RAG)、TensorRT-LLM和RTX加速。要使用Chat with RTX的话,需要配备GeForce RTX 30、40 系列以上的GPU,或者是RTX Ampere、Ada Generation GPU。除此之外,用户最少需要配备 8 GB显示卡记忆体。 Chat with RTX支援各种文件格式,包括word档、pdf、doc/docx和xml。只需将应用程式指向包含档桉的资料夹,数秒内就可使用。此外用户亦可利用 Chat with RTX “观看”YouTube影片,整合影片内容。 英伟达强调,由于Chat with RTX在本机运作,无须连接网络,因此其查询速度非常快,同时用户资料仅会保存在装置,所以非常安全,用户可以安心处理敏感资料。 英伟达本周收报726美元,年初至今累计涨幅已超过50%。$英伟达$该公司将于北美时间,下周三(2月21日)公布业绩,届时市场也万分期待其对人工智能开发的新动态。 (英伟达年初至今走势图,来源:谷歌)
lg
...
Sissi
02-17 08:37
全球看好AI!台积电市值暴增420亿美元
go
lg
...
最有价值公司之列。 在行业巨头英伟达(
Nvidia
)下周公布业绩之前,投资者纷纷涌入AI处理器芯片的关键供应商台积电。 周四(15日),台积电的股价在台湾股市飙升近8%,使其市值达到5750亿美元,在全球排名第13位。 这使得该股的市值与Visa Inc.、博通公司(Broadcom Inc.)和特斯(Tesla) 等公司的差距接近600亿美元,并在2020年短暂停留后重新跻身前10名俱乐部。 (来源:彭博社) 由于AI推动的乐观情绪,台积电股价自9月底以来已上升逾30%,并且还有进一步上扬的潜力。 #AI热潮# 上个月,苹果(Apple)和英伟达这家主要芯片制造商的高管表示,由于智能手机和计算需求出现复苏迹象,他们预计本季度将恢复稳健增长。 英伟达将于2月21日公布的财报可能会提供另一个催化剂。 彭博资讯分析师Charles Shum表示:“台积电股价的飙升反映了投资者对AI技术未来增长前景的乐观态度。” 他补充道:“该公司是英伟达AI芯片最重要的供应商。” 最近的上升已使该股处于超买区域,这是一个技术障碍。AI领域出现任何麻烦迹象或英伟达盈利,令人失望也可能导致股价下跌。 摩根士丹利上调了该股的目标价,并预计市场将提高其估值。 根据彭博社汇编的数据,该股在市值超过200亿美元的全球半导体制造商中拥有最高推荐共识评级。 期权交易员预测升势将持续。根据彭博社汇编的数据,美国未平仓看涨合约数量接近历史新高。 台积电的估值似乎也不高,该股的预期市盈率为17倍,低于费城半导体指数的五年平均水平18倍和27倍。 包括Charlie Chan在内的摩根士丹利分析师在本周的一份报告中写道:“我们预测台积电将从人工智能半成品中获得更有意义的收入,并相信其对全球AI供应链的战略价值正在增长,这将有助于推动该股重新评级。” 如果他们的预测是对的,台积电可能用不了多久就会跻身市值前十的俱乐部。
lg
...
marsh
02-16 14:36
“科技七雄”若被视为一个国家 市值全球第二大
go
lg
...
t)、亚马逊(Amazon)、英伟达(
Nvidia
)、Meta、苹果(Apple)、Alphabet和特斯拉(Tesla)。
lg
...
金融界
02-16 02:39
The Motley Fool公司:2024股票趋势预测,这三只AI股票必入
go
lg
...
只可以考虑购买以继续获利的AI股票。
Nvidia
股市的势头一直由“七巨头”所带动,这是一些市值巨大的科技股,以其主导的业务模式和雄厚的资金领导着AI的发展。 其中之一是芯片公司
Nvidia
,在过去12个月里涨幅达到222%,是华尔街表现最佳的股票之一。通常在目前这样的涨幅之后不应购买股票,但
Nvidia
在AI芯片需求方面的加速增长可能是前所未见的。 一家已经做了数十亿美元销售额的公司,很少会加速到三位数的增长率。但这正是
Nvidia
所表现的。 更重要的是,这种势头似乎可以持续下去。该公司控制着AI芯片市场的大部分份额,这个市场在未来几年可能会增长到超过4000亿美元。
Nvidia
的H100和H200芯片不仅是构建AI计算机的首选硬件,而且该公司还计划进入定制芯片市场,瞄准那些可能设计和构建自己AI芯片的公司。 分析师们相信,该业务的盈利将以每年超过42%的速度增长,这意味着为股票支付35倍的前瞻性市盈率(P/E)是非常合理的。当然,已经获得巨大收益的投资者可能会获利了结。不过,
Nvidia
的前景使得任何回调都是非常棒的长期买入机会。 最好的策略可能是逐步购买,因为一个具有如此强劲基本面的股票在下跌之前可能会上涨多远是无法预测的。 Super Micro Computer 像
Nvidia
一样,Super Micro Computer正在经历一个增长高峰,投资者可能会难以理解,因为股价上涨得如此之快。 仅在过去一年中,这支股票就上涨了751%。AI的前所未有的助推正在为这些巨大的涨幅提供合理的解释。Super Micro Computer销售模块化服务器系统,这意味着其客户可以购买现成的最先进的服务器,而不必自己设计和构建这样的系统。 该公司成立于1993年,云计算的转变,现在是AI,正在将增长推向新的水平。该公司最近公布了其2024财年第二季度的收益。营业收入同比增长103%,环比增长73%。 这是一家数十亿美元企业的指数增长,管理层指导第三季度的年度同比增长超过200%。 当收入像这样倍增时,看到股票也在做同样的事情就不应该感到震惊。分析师对Super Micro Computer寄予厚望,他们预计其盈利将以平均年增长率37%的速度增长。以34倍的前瞻性市盈率来看,这意味着如果它继续表现如此,这家高企的股票可能是一个潜在的便宜货。 Meta Platforms 社交媒体公司Meta Platforms在过去一年里飙升了163%。 这家公司在AI方面也有很多事情要做,但Meta更多地是一个关于复兴的故事,因为其广告困境和过度支出导致其在2022年在华尔街失宠。从那时起,Meta已经反弹,Meta通过削减成本重新确立了其地位。 Meta拥有社交媒体应用Facebook、Instagram和WhatsApp,可以继续吸引用户。截至去年第四季度,其总用户数增长到39.8亿月活跃用户,较2022年增长了6%。 该公司收入同比增长25%,并支付了其有史以来的第一笔股息,这表明公司有信心在为长期增长投资的同时与投资者分享更多利润。 由于Meta在2022年如此低迷,股票的显著涨幅仍然没有使其股价过高。它以23倍的前瞻性市盈率交易,对于分析师认为未来几年其盈利将以将近20%的年均增长率增长的杰出业务来说,这是合理的。Meta Platforms股票在2024年看起来是一个买入并持有的选择。
lg
...
Heidi
02-16 00:54
上一页
1
•••
102
103
104
105
106
•••
176
下一页
24小时热点
马斯克突然语出惊人!比特币骤跌失守9.35万、黄金下探2605低点 拜登将宣布中东停火
lg
...
特朗普重大决定冲击全球!美元跌了、比特币歇了 黄金惊现过山车行情
lg
...
特朗普决定与一则报道让黄金“血流成河”!金价崩跌逾90美元 如何交易黄金?
lg
...
PCE数据或“大爆表”?!金价暴跌、一度失守2660
lg
...
突发大行情!金价日内暴跌近100美元!中东欲停火“叠加”特朗普财政部长人选、令多头一蹶不振
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
14讨论
#链上风云#
lg
...
47讨论
#美国大选#
lg
...
1329讨论
#VIP会员尊享#
lg
...
1503讨论
#比特币最新消息#
lg
...
615讨论