全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
财富汇
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
台积电11月销售额同比下降7.5% 芯片市场复苏长路漫漫
go
lg
...
已基本耗尽了过剩的供应。 对人工智能(
AI
)
芯
片
的需求正在提振英伟达(NVDA.US)、AMD等公司的业绩,并填补了台积电最先进生产节点的订单。周三,AMD预计人工智能芯片市场规模在未来四年将攀升至4000亿美元以上,这是AMD 8月份预测的两倍多。台积电还生产AMD的芯片,包括最新的人工智能芯片MI300。
lg
...
金融界
2023-12-09
涨停复盘:A股又相信“光”了!多模态AI席卷A股,高位股却情绪崩塌,3连板扛旗(12.8)
go
lg
...
多模态大模型Gemini以及AMD发布
AI
芯
片
,周四美股市场上AMD、谷歌股价大涨,映射至A股市场。同时,AI文生视频软件Pika 1.0版本也于近期发布,热度迅速席卷全网。 光通信:国盛证券指出,谷歌发布大模型,其配套硬件tpu v5p备受关注。参考tpu v4版本,其一个pod可实现4096张tpu的互联,相较于目前主流方案互联能力极强,故推测本次tpu v5p版本互联能力有了进一步提高。 谷歌在交换机层面使用OCS光交换的思路,充分体现光子在超大型AI超算架构下的优势和重要性,而随着通信速率从400G-800G-1.6T的提升,未来内部短距离场景互联很可能也将向光倾斜,谷歌正在用光子重新定义超算通信互联。 氢能源:国务院印发《全面对接国际高标准经贸规则推进中国(上海)自由贸易试验区高水平制度型开放总体方案》。其中提出,支持临港新片区加快氢能核心技术攻关与标准体系建设,允许依法依规建设制氢加氢一体站,开展滩涂小规模风电制氢,完善高压储氢系统。 六、市场情绪
lg
...
金融界
2023-12-08
最新发声!A股拐点已至?
go
lg
...
下,叠加谷歌的多模态大模型、AMD上修
AI
芯
片
市场规模预期、西部数据(WD)存储芯片大规模涨价等消息,对也算力领域形成了直接的催化。在海外互联网巨头AI模型军备竞赛下,算力基建产业链有望持续受益。 从今日市场板块间的走势来看,财联社评论称,AI是当前市场环境下最有可能实现机构资金与短线游资共振的方向。其中,市值较大的万兴科技、昆仑万维等中军型个股维持着较好的上涨趋势,上述锚定的个股若是没有出现明显的退潮信号,AI方向便仍有望反复活跃。 不过,由于当前市场的延续性相对较差,在接连两日集中爆发后,AI方向短期或将再度面临一定程度的分化。而且,昨日传媒、游戏等应用端涨势更胜,今日则是CPO、光模块、算力等上游方向领涨,也体现出了AI内部的分化。 叠加信雅达、龙版传媒等高位股出现退潮趋势,因此后续仍要留意一致性过高导致的短线再度分歧,应对上,仍以把握结构性机会为主,聚焦核心热点才是关键。 IPO市场重大变化 除了AI方向之外,新股市场今日也迎来罕见大涨。 12月8日上市的中远通,盘中一度大涨435%,盘中最大浮盈约1.5万元。截至收盘,中远通涨幅仍在300%以上,全天成交额超过15亿元,换手率78.19%。 资料显示,中远通是一家专注于通信电源、新能源电源和工控电源等产品的研发、生产和销售的科技创新驱动型企业,为通信、新能源汽车和工业自动化控制等领域客户提供定制电源解决方案。公司的主要产品为通信电源、新能源电源和工控电源。 据招股书,在通信领域,公司客户以国内外大型通信设备厂商为主;在新能源领域,公司拥有汇川技术、英威腾、蓝海华腾、吉利、比亚迪等国内知名新能源汽车集成厂商和整车厂商客户;在工控领域,公司与国际领先的工业联接解决方案供应商魏德米勒等客户建立了良好的长期合作关系。 近期,新股上市首日赚钱效应虽然表现不错,9月至今上市的54只新股首日收盘平均涨幅有115%,但实现3倍以上涨幅的仍是少数,仅百通能源、阿为特、中远通三只。 新股市场赚钱效应修复,与A股IPO压力缓释有不小关系。 据统计,从8月27日证监会宣布阶段性收紧IPO节奏以来,审核环境和资本市场环境发生较大变化,目前已有超过70家拟上市企业宣布撤回IPO,今年1-11月共有220家企业终止IPO审核。其中主动撤回申请的企业占比逾八成。 除了撤回申请的企业增多,A股IPO降温还体现在募资额和排队企业数量的减少。据国泰君安统计,今年A股全年发行规模预计达3500亿元至4000亿元,同比将下降三成至四成。此外,在过去3年,A股IPO排队企业数量一直在900家左右,而今年IPO排队企业数量已降至700家左右,为近4年来的新低。 A股IPO发行节奏放缓,一方面能促进投融资动态平衡,修复投资者信心;另一方面还可以引导资源流向符合国家战略、具有核心竞争力的高科技产业,优化产业结构,进一步促进资本市场良性发展。 陈果:现在处于熊牛转换时 最后,分享一下机构对A股的最新看法。 此前,中信证券判断,12月投资者对经济和市场的信心有望迎来拐点。在近期的2024年度中信建投资本市场峰会中,中信建投首席分析师陈果也有类似判断:从当前股票市场的隐含风险溢价看,A股现在的位置符合熊牛转换时。 具体而言,明年的市场会迎来两点转机: 第一个是盈利会改善。今年的A股盈利是负增长的,从前三季度综合来看,全A股扣非净利润同比增长-2.51%,估计到全年来看盈利也会承压。明年根据宏观的核心假设,陈果预测会是正增长,而且非金融,可能是由-3.8%转到明年的正8.8%,所以这是一个熊牛转换非常重要的基础。 第二个是机会的增加。看景气度投资,今年存在一定困难。市场今年热议的是炒主题、看股息,没办法做景气投资。这是因为盈利的周期波动到了低点,整体的盈利周期负增长,但这一点不太会持续的。需求侧的管理明年会加码,在这种背景下,明年盈利增速不管是价格还是量的恢复,盈利增速占比超过30%的行业会明显上升,所以景气度投资一定会增加,刚开始不一定很强,但是边际上一定会增加。 基于上述两点,陈果判断,现在处在市场向上的前夜,盈利改善有三条线:第一,一部分结构性的会有些弹性;第二,讲故事修复的也有弹性;第三个就是在这阶段做期权的思维。 具体行业上,陈果指出,如果只是从盈利角度排序,科技是站在第一位的,其次可能去看医药,再然后去看制造、消费、金融。此外,顺周期的行业是有机会的,尤其是明年稳增长的力度加码,叠加估值中枢不在下移这一点考虑,煤炭有色是比较好的选择。
lg
...
证券之星
2023-12-08
AI算力需求超预期!5GETF(515050)大涨近4%
go
lg
...
力需求超预期,AMD与谷歌相继推出高端
AI
芯
片
挑战英伟达。 消息面上,北京时间12月7日凌晨,AMD新品发布会上,公司CEO预计全球数据中心AI加速器市场规模将从2023年的450亿美元增长到4000亿美元,复合增速达到70%!远超此前预期。发布会上,AMD正式发布Instinct MI300X、MI300A等产品,在算力、显存规格等方面超越英伟达;推出ROCm 6软件平台,针对LLM、AIGC等重点优化,性能持续改善,有望在英伟达Cuda生态之外获取更多份额。 2、AI大模型持续进化,谷歌发布大模型Gemini对标GPT-4,同步推出自研
AI
芯
片
TPUv5p。当地时间12月6日谷歌正式发布Gemini大模型,包含3个版本,其中Gemini Ultra在MMLU中超过GPT-4,并且在HumanEval和Natural2Code测试中展现出色能力。 光大证券通信团队认为,全球AI加速器市场规模提升,利好光模块市场预期,24年英伟达B100推出有望拉动对800G和1.6T光模块需求,LPO与CPO等技术为市场热点。 资料显示,5GETF(515050)汇聚硬件算力龙头个股,最新规模达72.10亿元。与光模块、光通信、算力租赁概念板块重合度高,截至2023年11月7日,持仓股中上述概念权重占比高达32.23%。成分股不乏铖昌科技、盛路通信、臻镭科技等卫星互联网核心标的,以及光迅科技、中际旭创、天孚通信、新易盛、梦网科技、烽火通信、紫光股份等热门算力概念股。(联接基金C类:008087) 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-12-08
机构:消费电子行业明年景气度有望迎来拐点,华工科技强势上涨带动行情,消费电子ETF(561600.SH)上涨0.76%
go
lg
...
市场成长助力。伴随着终端需求逐步回温,
AI
芯
片
供不应求,IDC预期2024年半导体销售市场将重回成长趋势,年成长率将达20%。 消费电子ETF(561600.SH)跟踪指数成分券中包含40%以上半导体芯片公司,长期看受益于新一轮科技周期的开启,AI赋能有望引领下游需求爆发,中期看半导体国产替代进程加快,叠加消费电子库存迎来拐点,短期看当前消费电子板块处在估值底部、盈利底部和需求底部阶段,加上公募基金持续增持,明年景气度有望迎来拐点。 消费电子ETF(561600.SH),场外联接(A类:015894;C类:015895)。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-12-08
算力芯片市场趋于活跃,科创板50ETF(588080)助力分享芯片半导体增长预期
go
lg
...
生态发展新增了亮色。尤其是其大幅调升的
AI
芯
片
市场预期,将给国内
AI
芯
片
厂商带来信心加持。 科创板50指数作为半导体属性最高的宽基指数,在半导体持续发展的背景下或迎来配置良机。跟踪科创板50指数的科创板50ETF(588080)规模和流动性在同类产品中领先,助力普通投资者共享
AI
芯
片
带来的科技红利。 本条资讯来源界面有连云,内容与数据仅供参考,不构成投资建议。AI技术战略提供为有连云。
lg
...
有连云
2023-12-08
港股开盘:恒生指数涨0.17%,锂电股活跃天齐锂业、赣锋锂业涨超2%
go
lg
...
普遍上涨,半导体、芯片股涨幅居前,发布
AI
芯
片
后AMD涨近10%,发布最强AI模型的谷歌收涨超5%,纳微半导体涨近4%,英伟达涨 2.4%,Meta涨 2.88%, 特斯拉涨 1.37%。中概股涨跌互现,爱奇艺涨超4%,哔哩哔哩、百度、网易涨超2%,小鹏汽车跌超4%,蔚来跌超3%。
lg
...
金融界
2023-12-08
【美股收市】三大股指重获上涨动力 美国房屋抵押贷款利率连续6周下滑 AMD推出
AI
芯
片
股价暴涨10%
go
lg
...
周四(12月7日),美国股市上涨,道琼斯工业平均指数和标准普尔500指数打破了连续3天的下跌势头。与此同时,美国房屋抵押贷款利率已经连续第6周下降,目前略高于7%。由于AMD推出了针对生成式人工智能的最先进芯片,其股价飙升了近10%。
lg
...
阿泰尔
2023-12-08
AMD发布“性能最高的”
AI
芯
片
行业迅速“内卷起来”
go
lg
...
务中使用AMD的新款芯片。 苏姿丰还对
AI
芯
片
行业的规模做出了令人瞠目结舌的预测,称未来四年内该行业规模可能攀升至超过4000亿美元,比AMD在8月份给出的预测高出两倍多,表明对人工智能硬件的期望正在快速变化。
lg
...
金融界
2023-12-07
Future3 Talk四期回顾丨DePIN未来趋势 哪些应用方向值得关注?
go
lg
...
从整体趋势上讲,未来的边缘设备上都会加
AI
芯
片
,有足够强的算力支撑小模型在本地去做运算。这样的好处在于不用消耗网络资源和云端上的算力资源,在本地就可以高效快速地完成AI模型的推理和计算,从而打破了大公司的壁垒,为AIoT公司和小型创业公司开辟了新的赛道。这是 AIoT设备厂商的机会。 对于应用开发者来说也是个机会,因为Network3还会提供一个SDK,帮助应用开发者,利用他们现有的用户群的设备上的算力和用户使用产品过程中的数据,训练符合其用户特定应用场景下的AI模型,而无需搭建自己的中心化的AI模型训练平台。这样一来,利用Network3的SDK,他们就能高效地用用户的手机上的数据和计算能力,快速训练出适合他们APP里的垂直AI模型,这样可以从功能和交互上大幅度的升用户体验。从交互方式上看,把传统的UI/UX交互方式转变为以AI Prompt方式(语音或者文字)来完成特定的任务,这对整个Web2行业也是一种创新和赋能。 彭昭(主持人):我之前也看到过数据,60%的计算是要部署在边缘的,也就是说它未来的市场空间要比中心化的云平台大得多。 Rock:是的,从数据集的角度来讲,边缘设备本身能够采集海量的数据,包括实时数据和边缘设备本身所固有的数据,我们可以激活这些数据,主动引导边缘设备上的用户去产生数据集,比如给他们下发一些动态的Task,让他们去标注或是产生一些相应的数据集供AI公司使用。在此过程中,用户也可以通过完成这些task去拿到token reward。我们用隐私计算技术,保证用户数据不离开本地,保护用户隐私的情况下,解锁了边缘数据的价值。 Ben:就像Rock总刚刚所讲的,边缘计算也好,去中心化计算也好,想要真正实现去中心化的计算,前提是数据本身是要去中心化存储的,或者说这个数据并不是垄断的数据,如果存在去中心化计算,那么大公司、厂商或是其他dApp的开发者就无法使用这个数据集,因为很多科技巨头所掌握的数据集很少会对外开放。如果数据集是通过dApp由用户端产生的,且数据所有权掌握在用户手里,那么我们通过各种方式将这些数据做成一个市场,并进行去中心化存储,就能解锁有关数据训练、AI计算等更有价值的数据集,这也是IPDN的一个愿景。 彭昭(主持人):可以总结一下你们项目的核心亮点或优势吗? Ben:IPDN想做的是填补市场上关于热数据存储的空白。在当前的Web3存储市场中,Arweave、Filecoin等项目的问题在于整个存储流程以及模型设计得过于复杂,开发者的使用门槛很高,数据读取和写入的性能也无法达到专业化存储的要求,所以很多dApp开发者还是倾向于使用中心化存储。但近几年,一些中心化云厂商存储问题频发,这对用户的数据来说显然也并不是一个好的归宿。这就是IPDN目前想做的事情,即热数据存储。 Yan:先说DePIN的重要性。Web2是基于平台的互联网,Web3则是以用户为中心的互联网。而作为一个以用户为中心的互联网,其底层基础设施必须由用户自己把握;一个Web3.0的基础设施如果仍是由平台来控制,那么它一定是“挂羊头卖狗肉”。当然,这个世界的网络形态是复杂的,并不是说所有东西都要DePIN化,但DePIN一定要存在,这是我们做DePIN的一个本质原因。我自己加入了很多互联网标准的制定工作组,关于Web3.0未来的互联网技术栈也有过很多讨论,其中最基础、最底层的还是P2P communication等等。所以DePIN对Web3是个刚需,只有把基础设施交还给用户本身,才能够建立一个以用户为中心的互联网。 第二点,MetaBlox为什么要做DeWi即去中心化无线网络这个赛道呢?这里有着现实的考量。目前,无线网络上网只有两种方式,一是手机上网,二是WiFi上网,而手机上网是整个互联网的基础。上网的核心要求是安全、加密,同时可以自由漫游,手机网络和WiFi网络都可以实现,它们都是用安全证书来登录的,但区别在于手机网络是付费的,而WiFi网络是免费的,这也是为什么现在全球74%的手机网络流量走的是WiFi,而付费的手机网络运营商也有相应的资金建设基础设施后台来处理证书登录。 免费的WiFi网络怎么实现这一点呢?只能通过DePIN,这也是MetaBlox能够成为WiFi联盟和WBA(无线宽带联盟)全球九个Certified OpenRoamingTM ID Provider之一的原因,因为我们代表了WiFi联盟实现WiFi漫游的方向。WiFi是免费的,要做到和手机网络同等水平的漫游和安全,就必须借助社区力量来构建一个去中心化的身份网络。因此,DePIN对于WiFi行业是个刚需,它的全球构建是需要通过DePIN来实现的。 总得来说,我们认为DePIN是Web3的基础,也是WiFi领域的一个刚需,这就是我们做MetaBlox的原因。 彭昭(主持人):我看到新闻说MetaBlox实现了百万mPoints发行与2000节点部署,这里的mPoint指的是什么? Yan:这个问题问得很好。MetaBlox的代币经济学和万向区块链的三代币经济学其实是有异曲同工之妙,mPoint相当于点卡,通过staking产生股权币,同时还有NFT,代表矿机。我们的测试网从今年3月到5月底开始陆续测试并正式上线,目前每个月的节点数翻倍,10月是1000个节点,今天已经有2000多个节点了,增长速度非常快。 mPoint就是我们用来激励早期社区参与者的,mPoints通过staking产生股权币MBLX,目前社区已经产生了100万个mPoints。MBLX预计明年一季度正式上线,目前全球50多个国家的矿工正在参与我们的生态建设。 彭昭(主持人):这2000个节点中的每一个都相当于一个WiFi通讯设备,可以这么理解吗? Yan:不一定是一个WiFi的网络节点,也可以支持无线接入点。目前全球支持MetaBlox协议的节点有300万个,这些是WiFi联盟已经部署下去的节点,用户可以在这300万个节点中自由漫游,但不能挖矿。刚刚说的2000个节点是挖矿节点,它们是由社区共建的。我们和WBA约定是希望未来全球OpenRoamingTM的网络中有20%的节点是由社区推动的,也就是说当节点达到500万个时,其中有100万是由无线网驱动的方法建立的。 彭昭(主持人):下面请EMC的Zed来介绍一下。 Zed:EMC主要是为AI服务的,所以我们会关注AI多一些。我们把针对GPU的算力分为三种:训练算力、推理算力、渲染算力。 EMC通过自己的路由协议与底层的传输协议,把这些GPU聚合在一起。很多人认为把去中心化算力运用到AI似乎是不可行的,因为大语言模型对显存和数据量的要求很高,大多数使用的是英伟达的GPU,而英伟达GPU最核心的价值是NVLink和HBM高速显存。从这方面来讲,目前我的确看不到去中心化的节点如何去跑一个大模型训练的可能,在这种情况下,多半是把一些节点的集群合在一起,通过NVLink达到每秒900G的传输速率。但这样的集群也可以成为EMC网络上的一个节点,同时,我们把个人零散的GPU与一些中心化节点结合在一起,组成了一个去中心化网络,这是目前已经做到的。 第二个应用场景是跑推理。我个人判断明年年中左右,大语言模型的训练可能会相对冷下来,因为特别烧钱。中国现在最大的大语言模型MiniMax的算力需求是1万张H100,我们现在最大的一个节点上有200台,大约1600张H100,总投资是多少呢?将近7亿人民币,这不是小公司能玩得起的,而且这样大算力的租用成本也非常高,所以大语言模型公司能否长期持续进行这样的投入,我表示质疑。要保持长期训练,必须产生经济收益,就像GPT和Midjourney虽然花了很多钱训练,但它们有2C服务,可以产生商业变现,那就可以持续投入。所以我个人预估,明年对AI来说可能是推理的大年。 一旦进入推理服务,对大的集群的需求就会降低,去中心化的方式反而非常合适。前不久有家做图片训练的爱沙尼亚公司租用了EMC网络一个区域中的8个去中心化节点,部署花了两天,然后用一天时间跑完了100万张图片的训练,相当于仅用了三天时间就跑完了原本三个月的工作量,成本也低了很多。同时EMC也不用为此付费,而是通过DePIN的方式给予节点奖励,这就实现了双赢:使用方很满意,节点本身也能够产生收益并变现。同时我们正在和一些上市公司以及有意在GPU方面做资产布局的公司合作,合作的规模都很大,因为投入这样的节点建设基本要一两千万美金起步。 现在做AI主要考虑三点:模型、数据、算力。模型通常是不成问题的,可以在开源的模型上进行调整,也可以自研;做某个行业的AI训练的话,数据集也不会缺,所以算力就是唯一的问题,没有足够的算力,做什么AI都是天方夜谭。但算力不是想投入就能投入的,英伟达H100的订单已经排到18个月后了,有钱也买不到;即使能买到,还需要建大规模的IDC、服务环境,投入也极高。对这些AI公司来说,时间就是成本,EMC能让他们直接使用起来,且成本仅仅是自建或是传统云服务厂商的25%~30%,这其中的经济效益是非常可观的。 第三是数据。EMC从建初始节点的时候,就与其他存储项目合作并打通,现在EMC网络中的Lora、checkpoint、LLM模型,以及用户直接产生的数据,都是采用去中心化方式存储的,目前我们正在进行第二阶段的合作,第一阶段已完成模型调用,实现了去中心化存储。 这里多说几句,我认为存储并不是一个大赛道,目前还为时过早,因为存储空间里的大多数文件都是从Web2世界来的,但Web2世界里有价值的数据都已经被巨头垄断了,他们不会因为去中心化存储的成本比云存储低,就把数据迁移过来,他们更多考虑的是数据价值以及迁移和运维的成本。而AI数据都是原生数据,这些原生数据可以在最开始就存储在去中心化网络中,这比迁移原来的数据要容易得多,且这部分数据并不以其大小作为价值,而是以数据本身作为价值。举个最简单的例子,私钥最大只占十几K字节,但价值是巨大的。AI模型训练出来的数据集中,跑一个GAN或是CNN可能不算海量数据,但这些数据的价值是巨大的。 在第二阶段的合作中,EMC要求的不仅仅是存储,还有全球CDN的加速,AI模型动辄几个G甚至几十G,没有大量CDN的加速,就无法实现大量数据的相互调用,传统互联网节点之间的相互传输就会成为一个瓶颈。 如果数据已经实现了去中心化存储,下一步就是怎样利用AI去使用这些数据。我相信在座各位都会使用ChatGPT,但我自己宁愿去使用EMC节点上部署的大语言模型,为什么呢?因为我用的时间越长,它就变得越聪明,经过我的大量训练,它开始学会用我所引导的思维方式和我对话了,但这部分数据不在我手上,我就不放心,我训练出来的结果可能都跑到OpenAI或是微软这样的公司名下了。 我有这样的担心,相信其他人也会有这样的担心,所以EMC有个“算力插座”,我们希望训练出来的数据集是由用户的私钥来调动的,它是切片的,加密地存在整个网络中,归用户个人所有,这样你才敢放心地使用AI,否则AI的效果越好,可能你就会越担心。 总而言之,我们之所以做EMC,就是因为看到了AI和Web3的结合点。AI是一个典型的生产力工具,它的速度和学习能力比人强得多。区块链的底层是个制度,能够分权和去垄断,它牺牲了效率,但带来了一个更安全的环境,这两者听起来是矛盾的,但考虑到AI已经是个战略级的武器了,是国策的竞争,那么当这匹马跑得越来越快的时候,缰绳握在谁的手里就是个重要的问题。通过Web3的体制与AI结合,给它制造一个缰绳,制造一个约束的环境,制造一个更安全的环境,我觉得这两者结合是更合适的。 彭昭(主持人):我们之后会更具体地讨论DePIN和AI的结合点。现在直播间有上千位朋友,很多朋友可能是今天第一次来收看我们的直播,也是第一次接触DePIN,因此想请杜总和林总来介绍一下DePIN以及DePIN相关的一些优势和价值,并点评一下Future3 Campus的项目。 杜宇:好的,我先讲,之后再请林总补充,林总也是物联网行业的老兵了。我可能更多地从区块链行业的角度或者站在万向区块链的角度来说,为什么对DePIN这么重视和感兴趣。 一方面,万向本身是一个具有传统行业背景的公司,所以在过去这么多年中,我们在国内做了很多产业区块链的应用。在这个过程当中,我们经常会遇到的挑战是“区块链如何保证数据源头的真实性”。当我们和工业企业、设备厂商乃至整个产业中的参与者们打交道时,怎么保证数据源头的真实性?怎么与现实世界相结合?这些与当下区块链原生的那些圈子十分不同。物联网是一个很重要的手段,之前在做产业应用时,例如生物资产、工业互联网等都涉及到很多硬件的东西,所以我们很早就和林总在区块链+物联网模组的领域有合作,我们也由此看到产业中的大量需求。 第二,从比特币问世至今已有十余年,业内很多人都在讲金融服务,包括一些主流的金融机构、主流产业等,其实他们很多都看不懂Web3,认为Web3都是DeFi等看不懂的东西。但我觉得DePIN其实是把Web3带进产业的绝佳桥梁,不管是通过硬件,还是通过大家所熟知的供应链、ESG、绿色金融等,这是很重要的一点。 第三,DePIN是非中心化的基础设施,或者说是新一代的基础设施。上次我们聊到DePIN和CePIN之间的关系,我一直觉得DePIN可以很好地对CePIN进行补充。以通信为例,国内很多城市的基础设施非常好,但是在大量的发展中国家,甚至在一些发达国家中比较偏的地区,其信号覆盖其实是很差的。在这种情况下,DePIN就是对现有网络建设的良好补充。 刚才Zed也提到了,AI模型训练面临着很多的问题,其中之一便是只有训练量够大才能提升AI的质量,但在算力紧张的情况下,我们可以通过DePIN来利用更多闲置的算力,例如通过Token和经济激励的方式,把闲置的资源利用起来,这也是很好的建设网络效应的手段。例如,我们上周聊到的充电桩的案例就是DePIN提升网络效应,补充现有网络建设的方式。家用充电桩大多一天只用一次,甚至可能一周只用一两次,如果能够把充电桩共享出来将对于推动整个新能源汽车的发展有很大的帮助,所以我们看到了DePIN的巨大潜力。甚至我之前跟林总也聊过,DePIN是重建数字世界的物理基础设施的巨大机会。 彭昭(主持人):感谢杜总。提到上次充电桩的DePIN项目,我想补充一个项目进展。我们在上周的直播中帮他们找到了合作伙伴,所以希望各位嘉宾到在介绍自己的项目时,可以分享一下各自想与什么样的合作方合作等,说不定我们就能搭上这个线索。接下来有请林总进行分享。 Leo:好的,我来接着杜总刚才的分享做点补充。首先,我非常认同刚才杜总讲的“DePIN是对当前自上而下的基础设施建设的有效补充”,我认为这是在加速全人类的数字化进程。因为传统基础设施建设是自上而下、由政府或大企业来驱动的,它的投入很大,建设周期也比较长。如果能够通过社区自下而上地对基础设施的建设进行补充的话,将对数字化进程有很大的帮助。 此外,我们也看到一个商业的趋势,即如今的商业都在往数字化变革,包括现在很多的DePIN形态其实在某种程度上来说也是未来商业的发展趋势,例如充电桩、自动贩卖机、无线网关等,相当于是无人值守的商户,它们能够对外提供服务,如果有第三方使用这个服务就需要对该网络提供的服务进行付费。 这类商业模式如果按照传统的方式来做,要么自己有资金去投入,要么VC融很多钱,或是走上市等途径。而DePIN事实上是一个很有意思的创新,他把这些商业行为、资产状态都通过数字化的手段,实时地、透明地登记到全球公开透明的账本——区块链上,让所有来参与建设的建设者、投资者都可以非常清楚地看到自己和共建者对网络建设的贡献,这些都是非常公允、透明地呈现在账本上面的,这样就使得激励的分配和未来网络的收益都是公允、透明的。 因此,我们可以看到DePIN的一个项目能够调动全球几十万甚至上百万的社区中的个体进行大规模的协同,这些社区的贡献者之间虽然没有雇佣关系,但是大家可以一起奔着同样一个目标去做协同,我们觉得这种方式是非常有意义的,也极有可能是未来数字化程度比较高的情况下,商业存在的一个新形态。 大家都提到了在DePIN模式下,数据的使用权能够归还给用户。除此之外,DePIN还有一个有价值的地方,尤其是当DePIN项目呈现为一个数据的网络时,例如DIMO是汽车出行数据的聚合网络,WeartherXM是全球气象数据的聚合网络,Arkreen是能源数据的聚合网络……这些数据网络通过DePIN可以实现,但却是传统的数字化比较难触达的长尾市场。因为传统自上而下去做数字化时会看ROI,希望投入能够最大化地得到回报。因此,有很多数字化项目都会挑比较大的标的、比较大的资产,因为无论是人力的投入还是资源的投入,资源集中后,如果资产标的比较大,它就能够有比较可观的ROI。但如果资产是比较分散的,它的投入就会支撑不了,或者说它的收入覆盖不了这些投入,这个市场它就没法去触达。事实上在数字化的进程当中,有不少这样的长尾市场是没办法用传统的模式去触达的。 这就是今天DePIN的模式,即利用全球社区自下而上进行建设,并由社区的builder来承担Capex的资本投入、Opex的运营支出,从而能够有机会把长尾的市场开发出来,这是DePIN模式对于去聚合数据资产的特别好的一个手段。我就先补充这两点。 彭昭(主持人):刚才杜总和林总把DePIN的价值和优势都提炼得很明确。相比中心化的基础设施,DePIN是一种去中心化的、分布式的基础设施,能够通过使参与者获得相关的收益来充分调动其动力,进而推动基础设施的建设。它是一种自下而上的变革,这与以前大资本投入,大人力、物力投入的建设方式完全不一样。 现在有很多项目实际上都是和AI相关的,所以我们今天想深入讨论AI与DePIN的结合。这两个技术都处在非常火爆上升的阶段,DePIN和AI的结合会发生在什么样的交叉点上?先请杜总和林总来说说关于DePIN和AI结合的整体性看法,然后再请项目代表们来具体说说各自是如何看待DePIN和AI的结合的? Leo:我认为可能会有如下几个结合的点。一个是大家先前也提到过的,AI大模型是需要大量的数据来训练,当下的格局其实会出现具备大模型算力的一方,也会存在具备海量数据的一方,双方之间有可能会存在博弈。例如,有数据的一方会有可能被有算力的一方切断资源导致算力不足,而有数据的一样也有可能切断数据供应,让有算力的一方无法继续训练资源。这是中心化的算力平台或数据平台在未来可能会产生的博弈。如果要打破博弈,那就意味着需要有无需许可的、去中心化的资源网络去支撑大模型的算力平台。数据是训练大模型的重要资源,我们需要探索的是未来能否以去中心化的方式获取数据的来源,并由数据的使用者自行来决定是否开放给平台用于训练。 第二个是能源,因为大模型的计算是一个非常大能耗的场景。如果大模型未来要持续地发展,就需要有持续的、可靠的能源供应,包括绿色能源供应、低成本能源供应等,这也是支撑大模型持续发展的重要资源。我认为,“如何得到无需许可的能源”是第二个对AI来说很重要的底层基础设施。 此外,AI未来的能力一定是依托在连接之上的,如何构建一个去中心化的、无需许可的网络也是我们需要思考的。因此,我认为DePIN与AI有非常强的互相依赖的关系。未来,AI需要有基于DePIN模式构建的无需许可即可访问的基础设施,包括能源基建、数据基建、连接基建。我觉得这些可能是DePIN未来网络的重要价值所在,或者说是会有很大的市场需求的。未来,大模型可能非常依赖于DePIN网络的这些资源的供应。 另一方面,我觉得刚才Rock提到的边缘计算也是一个结合方向。因为如今的大模型已经把互联网上所有能够爬到的数据基本上都爬完了。此后的新训练就需要优化数据来源,例如各种各样的传感器就是新的数据来源。未来,我们完全可以将部分数据的预处理和部分的AI计算分配到边缘,因为现在有些边缘计算的能力也越来越强,这是第二个我们认为DePIN和AI可以有很好结合的方向。 彭昭(主持人):这两点都是很关键的结合点,AI的发展也需要嫁接在一个良性发展的基础设施网络上,DePIN和AI这个结合是挺关键的。 杜宇:我想从两个角度做一些补充。第一,我觉得DePIN本质上是个基础设施,特别站在Web3的角度来看,它不是一个应用,而是基础设施。今天参加Future3 Talk的4个项目以及林总的Arkreen,分别代表了数字经济新基建的各个方向,包括计算存储、存储算力、网络、能源等,这些都是我们可以用Web3来重新做一遍的。数字经济除了给人用以外,还有服务于AI的。因此,DePIN可以说是未来AI的基础设施。这个其实大家刚刚已经讲了很多了,我就不去展开了。 第二,其实是和激励相关的,因为Web3核心的技术是区块链,区块链的核心是一个账本。因此,未来AI不管是数据维度还是AI算法维度,互相之间的经济行为一定是记载在区块链账本上的,包括如今Web3领域中提到很多的DeFi、智能合约衍生的DeFi协议、SocialFi协议等,都是构建以AI驱动的经济体的重要金融基础设施。综上,我觉得DePIN与AI的结合在于这两点,第一个是物理世界的基础设施,第二个是AI的金融基础设施。 彭昭(主持人):这两个视角也挺关键的。刚才杜总和林总都提到了DePIN和AI的结合点。接下来请各个项目代表结合自己的时间来谈谈DePIN和AI的结合。从Rock先开始吧。 Rock:我就举一个例子,以手机硬件为例。手机上有很多的视频和图片,这些都是很珍贵的数据集。但是用户又不想把这些资料上传到云端,因为有泄露隐私的风险。因此,我们就可以用联邦学习来链接这些用户设备上的数据,通过隐私计算来保证这些数据不离开用户本机,但是可以用于训练贡献梯度,即在本地完成训练贡献梯度,然后再到集成器里加权平均后经过几轮迭代使算法收敛。这样一来,手机厂商就可以利用这些训练好的模型去增强手机上的一些功能。例如,未来手机上的相机就可能会自带一些美图或者是物体消除AI调整照片的功能,即在手机本地就可以实现,不需要联网。这对于手机厂商来说,既提升了手机市场竞争力,又不用担心用云端算力增加成本的问题,是一个很值得发力做的方向。 对用户来说是手机性能上的提升,体验上的增强,也会便于手机厂商出货。他们会卷这些软件的AI算法去赋能他们手机,同时也会卷硬件,然后把他们的手机里安上性能更强的芯片来使手机具有本地推理和计算能力,从而更快更好的完成AI算法的训练和推理。这是手机行业上的一个应用,那么对应的电动汽车,智慧城市,健康医疗等AIoT涉及的领域还有很多用例,我就先不展开讲了。 彭昭(主持人):如果想到新的观点什么的,随时可以参与讨论。接下来请Yan进行分享。 Yan:我们昨天还在和一位上市公司的朋友讨论边缘AI与网络的结合。我们团队是英伟达的合作伙伴项目,所以我知道H100、H200显卡有多贵。但是就像Rock说的,现在在场景中有很多在边缘侧的算力服务需求,我们在做MetaBlox路由器的时候就考虑到了这样的需求。但这当中也有很多挑战,比如现在专业的编辑端的板卡和专业的WiFi板卡,它之间可以实现功能上互通,但性能并不是完美地匹配,需求却是非常高的。我给大家可以举个参考数据,例如现在大量的家用摄像头背后的边缘侧的处理就是一个很大的市场,也是一个非常好的现金流的生意,所以这些都是非常适合用DePIN与AI结合来做的。我觉得这是一个很好、很强的商业模式,Web2已经形成了很多正向的现金流的案例,那么Web3只会把这个趋势越做越宽,越做越大,希望大家一起努力。 彭昭(主持人):Zed刚才也提到,如果用GPT,可能会担心自己的数据并不能存在自己这里,但如果使用EMC的大模型,就能够保证自己数据的安全性,是这样吧? Zed:我就简单发散一下。我觉得还有件很重要的事:公平。去年年底GPT出来之后,大家都想去赶上AI这班快车,这其实是件好事,因为在AI这个行业里,大家的差距并没有那么大。Web2的创业是非常难的,流量垄断一切,但AI赛道的机会还有很多,很多人切入赛道比较早,做一些AIGC的应用,还是能获取一些红利。 但是很快红利就没有了,现在就开始卷得不得了。不但是大模型卷,应用也卷,卷到最后大家都在为英伟达和OpenAI打工——无非是你把他们的算力和模型拿来使用或者出租、出售,这其实不利于AI行业的发展。做AI创业,租用算力的成本很高,而且还不一定租得到,因为你不敢签长期协议。这是从AI创业者的角度来说。 第二是GPU芯片的生产厂家。一些国产厂商最新的GPU都会寄给我们做测试,通过去跑各种各样的环境,得到一个比较公平的数据。实话实说,差距还是挺大的,这个差距并不是硬件层面的,更多是软件层面的。硬件的制式可以做到7纳米或者更低,但实际上一跑起来就会发现,所谓CUDA兼容和原生CUDA还是两码事,所有应用都需要重新编译一遍,几乎不敢拿去让别人使用。这样的话,你的市场要怎么打开?但投硬件的话,成本又非常高,所以我们看到很多企业最终为了保险起见,还是会去购买英伟达。 但反过来说,是不是那些企业就没有竞争力呢?肯定不是的。如果通过DePIN的方式并入进来,跑一些小模型训练和推理服务,可能会发现性价比还是挺高的。EMC网络是按AI任务完成度计费的,虽然可能性能上有40%-50%的差距,但成本只有20%,这样使用起来性价比还是挺高的,而且任务也可以随意调度,不用在前期投入那么多资金去买硬件。 从这两个层面来讲,DePIN结合Web3的经济模型为用户和企业创造了一个更加公平的环境,再结合RWA,变现渠道就更简单一些。Web2的商业模式就是吸引更多用户,然后让用户付费,Web3有更高级的玩法。大家都知道金融化,金融不是洪水猛兽,如果结合一些金融产品的设计,可以让赛道里的一些创业者和企业更快地获得收益,那么他们就会有持续不断的资金来投入,这是加速行业发展的一件好事。 彭昭(主持人):接下来原本还有一个硬核的话题,就是RWA和DePIN的结合,但RWA也是一个新的叙事,门槛比较高,需要讨论很长时间,考虑到我们的时间比较紧,接下来不如趁着直播间有这么多朋友在线,我们每个项目聊一聊想和什么样的项目合作,找找合作的机会。 Zed:我谈一些真实需求,特别有趣。现在其实不缺客户,去中心化存储也没问题,就是数据传输太慢。上次我们想跑一个训练,把香港、新加坡、美国的IDC都问了个遍,最后发现最简单的办法就是买张机票,然后带着硬盘过去拷,否则这么大的数据量,根本不可能做到高速传输。我觉得数据传输对AI的发展是个极大的刚需,存储这方面我不是专家,海量数据调来调去,我也想不到什么特别好的办法,Rock和Ben在这方面应该都比较专业。 Rock:边缘设备,你直接在有数据的地方训练就会快很多。我也和其他行业交流过,他们宁可用卡车来传硬盘。 Zed:真的是这样,我一开始只是当作笑谈,但后来算了一下,好像这个方式确实是最可行的。说到边缘化的方式,小模型推理都没问题,速度已经非常快了,但对一些中大模型来说,要用DePIN的方式做到效率最高,就是要把闲置的加以使用,但并不是说离你最近的那个地方一定会闲置,算法做不到这一步,算法只能做到“你是最合适的,所以我往那儿去”,但做不到“我需要你,你就在哪儿”。 还有隐私计算,这部分我们也很早就在做了,未来大家担心的不仅是数据归谁所有的问题,还有数据会不会被滥用和盗取的问题。虽然目前还没有涉及个人数据的安全性问题,但很快就会提上日程,特别是对一些非常有价值的数据,当它的数据量不是特别大的时候,它的切片、加密等方式也是我们最近刚刚涉及的问题,这方面我研究得不是特别透,也想听听大家的建议。 Rock:可信计算是大趋势,有个核心的概念叫TEE(可信执行环境),这个很重要。未来的大趋势是在边缘设备上加TEE芯片,支持大家做可信计算。可信计算的核心之一是在CPU内做数据的加解密,数据即便是在RAM里,也是加密的,只有进到CPU里才进行加解密的动作,这就是TEE。所以未来TEE的CPU也是一个趋势,各个制造厂商都会加TEE的芯片,来解决数据隐私性的问题。我先补充这一点。 Zed:那天我们也提到了这点,但去跑数据之前它还是需要解密的。如果有更好的方式的话,我觉得未来会是个大有可为的垂直赛道。 杜宇:我补充一点,TEE还是有一些缺陷,需要先解密再去算,最新的方向一定是全同态。两个月前我见过一个在欧洲做全同态的团队,他们在用硬件的方式加速全同态的计算,说今天的全同态可能和两三年前的zk情况差不多。其实即使是今天的zk,也还没有做到完全可用,在速度、性能方面还存在问题,但全同态一定是最成熟、最完备的解决方法,虽然距离实现还有很大差距,对硬件的要求也非常高,特别是大模型训练,可能真的要等量子计算成熟了才有可能性。 彭昭(主持人):直播间有朋友想问下Zed,如果想和EMC项目合作,无论是作为builder、用户还是投资人,应该怎样来切入? Zed:EMC除了做DePIN外,还有EMC Hub。我相信做AI的一定知道Hugging Face和C站。Hugging Face和C站今年特别火,Github也是开发者非常熟悉的平台,但它们中间都是断层的。做过AI的可能都知道,在刚开始接触AI的时候,绝大多数精力并不是放在开发上面,而是去配置环境,这就特别浪费时间。整个社会分工已经很明晰了,为什么要反复造轮子呢? 所以我们当时就觉得可以在基础设施上加一个应用层,相当于把Github和AWS进行结合,做了EMC Hub。EMC Hub是一个类似于Hugging Face的模型聚合市场,基于Web3的经济系统让大家来贡献内容,你所贡献出来的内容是归自己所有的,如果别人去使用或是进行了商业化,你也可以从中获得收益。有赖于整个算力网络的支持,代码可以作为一个服务直接部署在网络上,就是“代码即服务”,算力提供者、开发人员甚至AI爱好者都可以把自己开发或微调出来的模型部署在上面当作服务,并获得收益。用声纹识别举例,其实开发难度并不大,有很多开源代码,只需要微调一下即可当作服务卖给很多有需要的企业。现在去做一个2C产品是很难的,但你如果把自己的API服务部署在EMC Hub上并收取费用,很快就能够变现,这就打开了很多新的创业空间。 彭昭(主持人):很清晰,大家应该也都知道怎样和EMC合作了,Rock和Yan也可以说一下。 Rock:我也说一下需求。我们base在硅谷,对于AI行业来说,这里的大厂也已经垄断了算力资源、一流的人才和数据集,我们这种创业公司的生存空间是很有限。我们目前的需求主要是人才,硅谷的算法工程师工资每年动辄20-30万刀起,我这次回国发现国内的算法人才也很多,特别是一些高校的同学们非常有天赋,能把业界前沿的论文快速消化吸收并且快速代码化的能力非常强。我们把AI搬到边缘上去需要三项最核心的技术:Efficient AI即模型的压缩优化、Federated Learning 联邦学习,以及刚才提到的Confidential Compute隐私计算,有对这三项技术感兴趣或是在这三个方向上有所积累的小伙伴和同学们请到Network3.ai上联系我们。 另外一个需求就是合作伙伴。如果有IoT厂商想尝试在边缘设备上训练模型赋能自己产品的,请联系我们,我们可以一起做个Pilot program。Web2的APP开发者如果不想去自己搭一套AIinfra,但是也想快速训练出自己app里的垂直模型的,也可以联系我们。谢谢! 彭昭(主持人):对刚刚说的这几个方向感兴趣的小伙伴可以给我们的视频号小助手留言,我们会有相关的同事来联系。接下来请Yan和Ben说一说。 Yan:我一直在关注视频号的互动,看到有网友问有没有社群的合作,我们是热烈欢迎社群合作的。现在几乎家家户户都有WiFi,现在既然要升级到WiFi6,同样的价格,为什么不换一个可以支持OpenRoamingTM的WiFi6 AX 6000设备呢?所以现在国内国外的需求都很旺盛,我们也非常欢迎社群合作,希望大家可以一起把OpenRoamingTM技术遍布到各家各户。有社群的朋友们欢迎跟我们联系,这是第一点。 第二,WiFi是一个难得的、每家每户、每个商店都需要的入口设备,伴随着WiFi6的换机潮,这些入口设备会是一个流量入口。拿小米举例,小米一般只做四个设备,手机、路由器、电视和汽车,其他都是生态链伙伴来做。我们也是希望聚焦入口设备,把兼容性做到最好。我们的WiFi路由器可以对接1-2T的SSD,设备都支持TrustZone,我本人在这个领域也有相当多专利,特别希望和存储、CDN等项目方合作,我们一起把DePIN部署下去。 第三,我们也希望与AI项目方开展深度合作。刚刚也提到我们团队是英伟达的合作伙伴项目,我们购买的所有机器都要支持SGX环境。但也有很多项目是用一个完整的机器作为可信执行环境,这也预示着隐私AI将是大势所趋。我个人特别看重边缘计算的隐私AI,早期各个小区施行人脸门禁的时候,大家都很担心自己的人脸信息被盗用,现在通过TEE环境可以确保即使黑客黑到设备里面成为root,也拿不走你的人脸信息。今后随着GPT等的发展,这个方向一定是大势所趋。MetaBlox虽然是WiFi网络,但因为我们是核心的入口设备,我们也支持边缘计算网络,希望可以和大家共建去中心化的隐私保护的边缘计算网络。 Ben:首先我们非常欢迎对IPFS技术有深入研究的开发者和我们一起去完善IPDN这个产品。同时,如果有开发者对去中心化存储有需求,比如你想构建一个dApp,用去中心化的CDN做数据、文件的存储,可以和我们联系,我们一起合作。 彭昭(主持人):我们的活动现在也接近尾声,接下来请杜总和林总每人做个一分钟的总结吧。 Leo:我也打个小广告。几周前香港金融科技周期间,我在Future3 Campus DePIN加速营的开营仪式上也讲到了DePIN应用链的启动,希望对DePIN赛道感兴趣的开发者和创业的团队和我们多多交流,看看DePIN应用链及其赋能能力能否支撑大家更快速地开发出DePIN产品的原型,也一起努力把DePIN赛道做得越来越热。 彭昭(主持人):DePIN应用链是个特别有价值的事情,很可惜今天的直播内容没涵盖这个话题,下次活动一定要包含进来。最后请杜总来总结。 杜宇:我个人感觉到今天为止,我们在DePIN方向上的探索还处于非常早期的阶段。今天我们主要讨论的是基础设施类别,上周是应用类,目前为止还没有看到整个DePIN生态完全的大爆发,我们今天和在场的几位行业先驱们一起在DePIN赛道做了更多的探索,希望能有更多示范性的案例出来给大家新的启发。 在全球范围内来说,我们的大湾区有着非常好的DePIN基础,但凡涉及到硬件都离不开大湾区,离不开深圳,这也是我们华人在整个Web3和DePIN赛道的巨大优势。我们希望能和从事物联网、硬件等行业的优秀企业家有更多交流,大家一起探讨如何将Web3与硬件、物联网相结合,探索出一片新的增长区域,我觉得这会是一件非常有意思的事。 彭昭(主持人):我也感觉随着讨论的深入,关注DePIN的朋友们的热情和数量都有了明显的提升,也期待下次和大家继续交流DePIN这个话题。我们今天的活动就到这里,谢谢各位。 来源:金色财经
lg
...
金色财经
2023-12-07
上一页
1
•••
122
123
124
125
126
•••
203
下一页
24小时热点
特朗普突然给市场“下马威”!全球疯狂巨震:美元急拉、这一货币惨跌
lg
...
特朗普向中国打响“第一枪” !彭博: 特朗普风险回归 中国为人民币划了条红线
lg
...
中美突传重磅信号!路透调查:特朗普2025年初对华征收40%关税 打击中国GDP增长率
lg
...
中美突传关税贸易战!荷兰国际集团:特朗普启动《国际紧急经济权力法》恐严重冲击汇市……
lg
...
【直击亚市】特朗普扬言加关税!人民币大跳水,美元拉升 亚股跌成一片
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
14讨论
#链上风云#
lg
...
47讨论
#美国大选#
lg
...
1329讨论
#VIP会员尊享#
lg
...
1506讨论
#比特币最新消息#
lg
...
616讨论