以外,还包含了一件以艺术品为特色的数字服装、带有服装的游戏头像,以及购买相应实体作品的权利。这种数字物理时尚和 AI 输出的独特融合是将游戏、时尚和 AI 结合在一起的有趣实验之一。Claire Silver 还通过她最近的系列作品解决了时尚摄影问题,并在 Braindrops 上得以实现。有关数字时尚主题的更多信息,请参阅我的文章:https://medium.com/1kxnetwork/augmenting-culture-the-emerging-field-of-digital-fashion-bead627c8dcd。 Little Swag World 是在创意工作流程 (从设计到实物) 中使用 GAN 模型的绝好案例。该项目背后的艺术家 Bosch 自己构建了最初的设计,然后通过 Stable Diffusion / Controlnet 运行它以生成独特的超现实主义作品。这种技术实现了高度的美学一致性,该项目的下一步是将这些生成模型与陶瓷相结合,制作由 AI 增强的 NFT 实物商品。 总而言之,我们预计会出现很多令人兴奋的 Crypto x AI 项目,从策划生成产品的去中心化品牌到 AI 代理设计师的可分割 NFT。 娱乐 在最初围绕 Nothing Forever 的炒作之后,生成式娱乐也获得了更为充分的发展。Nothing Forever 是一部基于 Seinfeld 的生成式可交互动画情景喜剧,在 Twitch 直播上全天候运行。有趣的是,它展示了媒体的力量,节目的叙事会根据 Twitch 聊天回复而改变,并允许捐赠者将他们的肖像作为一个角色导入节目中。 来自 Fable 的 Simulation 通过 SHOW-1 扩展了这项研究,这是一个用于提示生成电视节目的模型,其中写作、动画、导演、配音和编辑都通过提示 (prompt) 实现。他们最初在《南方公园 (South Park)》剧集中演示了这一点,但它可以很容易地扩展到任何 IP。我非常期待像我们在 web3 中看到的那样,更多无需许可的 IP 形式将深入试验这种类型的内容创作工具。 Upstreet 最近也开始尝试生成式电视节目,采用他们为虚拟世界平台开发的 AI 代理模型 (详细介绍见下文),允许创作者添加自己的 VRM 头像,并通过提示进行独特的互动和短剧创作。 另一个值得关注的领域是知识产权。Story Protocol 这样的项目正在研究使用去中心化的 IP 注册机构来促进 IP 的创建、分发和货币化。这对创作者很有用,相对于传统的 IP 许可,它更为丝滑,尤其在生成式 AI 时代尤为独特。NFT IP、meme 和其他娱乐项目可以获得授权并支付版权费用来生成各类衍生品,这样可以极大地解锁创作者作品的价值放大率。 你是机器人吗? 我们可能很快将面临一个问题:深度伪造。例如,通过对有影响力的人进行训练从而与粉丝互动的聊天机器人,以及社交媒体上的生成式垃圾邮件等等。要不了多久,验证谁是真实人类将至关重要。 Web3 在预防女巫方面付出了很多努力 (尽管该问题并未被根治)。然而声誉系统、人格证明机制设计、用户护照、灵魂绑定 NFT 以及整个代币经济都在致力于解决该问题。 认证硬件、zkML 和人格证明 我之前在这篇文章中详细讨论了 zkML 的实际意义和潜在用例:https://mirror.xyz/1kx.eth/q0s9RCH43JCDq8Z2w2Zo6S5SYcFt9ZQaRITzR4G7a_k。 有多个团队,如 Modulus Labs、EZKL、Giza,更专注于使用 zk 证明模型的推理。这些使用 zk 来验证模型输出的努力具有广泛的应用,并使 DeFi、身份、艺术和游戏领域的新实验能够以信任最小化的方式使用这些模型。 虽然有无数的项目专注于人格证明,但最有趣的应用程序之一当属 Worldcoin。Worldcoin 使用 AI 模型将虹膜扫描转换为简短的哈希值,以便在出现女巫攻击的情况时很容易地进行交叉检查来验证相似性或冲突。因为每个虹膜都是独一无二的,所以该模型能够确定用户是真实且独一无二的。它使用受信的硬件设置 (那个识别度极高的球体) 来确保模型只接受来自其相机并经过加密签名的输入。 同样,zk micophone 团队演示了如何使用经过认证的麦克风来创建音频内容并对其进行数字签名,以验证录音的真实性。密钥存储在麦克风的安全区域中,该区域通过签名来保证录制音频的真实性。由于大多数录音都是经过处理或编辑的,由 SNARK 驱动的音频编辑软件可以实现音频转换的同时仍能证明音频来源。Daniel Kang 还与 Anna Rose 和 Kobi Gurkan 合作,对经过认证的录音进行概念验证。 永远的影响力者 验证人格或人类创造的内容的另一面是接受深度伪造的可能性。与上面的语音克隆模型类似,一些有影响力的人选择创建聊天机器人来吸引他们的受众。一个著名的例子是 Caryn Marjorie,她使用其声音推出了一款 AI 女友产品,并训练了数千小时的 YouTube 视频,以完美地捕捉她的个性、举止和声音。用户可以用每分钟 1 美元的价格在一个私人 Telegram 频道中与她的头像交谈,发送和接收带有她肖像的语音消息。在推出的第一周,Caryn Marjorie 赚了 72,000 美元,随着订阅的增长,预计她的月收入将超过 500 万美元。 CarynAI 仅仅是 AI 女友产品的其中一个例子 (更多介绍见下文),想象一下,你可以和你最喜欢的游戏主播的 AI 模型一起玩游戏,实时对话,模拟真实的体验;或者,KOL 可以使用拟人化的 AI+头像,这些头像可以被授权用于时装秀或出版物等等。 ˚✧₊⁎( ˘ω˘ )⁎⁺˳✧༚ Uwu-ral Networks 是如此卡哇伊 (ノ◕ヮ◕)ノ:・゚✧* 一个不争的现实是,79% 的 18 至 24 岁成年人表示感到孤独;在 18 至 34 岁的人中,有 42% 的人表示 “一直” 感到 “被遗忘”;63% 的 30 岁以下男性认为自己是单身,而同年龄段的女性中有 34% 认为自己是单身;只有 21% 的男性表示他们在过去一周内从朋友那里得到了情感支持。 人是寂寞的。在一个孤独感日益流行的时代,尤其是在年轻人中,人工智能陪伴的出现提供了一个独特但略带反乌托邦的解决方案。AI 伴侣始终可用、无需判断且高度个性化。他们可以充当治疗师或欲望释放出口。他们可以是富有创造力的同事,也可以是生活方式的教练。他们总是在等着和你谈论你想要的任何事情。 做到这一点的基础结构可以是:使用个性提示微调模型,概述行为、外表、特征、沟通方式等。通过 elevenlabs 等人声模型运行模型的输出。根据要求使用图像生成器模型和定义的外观提示生成自拍照。生成适当的 vrm 头像并将其放置在可交互的环境中。好了,你现在拥有了一个非常适合你的超媒体伴侣。如果再融入 Crypto,你将可以让他们可拥有、可交易、可出租等等。 伴侣 上面的这种设置完全可以通过 DIY 实现,不过你也可以使用那些专门针对此概念的 APP。Replika 是最著名的例子,它允许我们与虚拟伴侣进行实时沟通而无需任何技术技能。这些应用程序通常以订阅模式运行,用户付费与他们的虚拟伴侣互动。此类产品不仅有利可图,而且它们还展示了这种趋势对人类心理的巨大影响:例如,Reddit 上的一篇帖子展示了一个人与虚拟伴侣连续 2000 天的交谈记录,而且我们还看到了求婚、AR 自拍创作等等。这里还有一个有趣的花絮:当色情功能从平台上删除时,subreddit 版主不得不将自杀热线 Pin 在了社区顶部以安抚躁动的社区成员。 基于角色的平台也开始涌现,它为用户提供了一种使用多重角色的方法 (通常也是订阅模式)。虽然在 Character.ai 和 Chub.ai 等平台上有许多现成的角色可供选择,但真正的新颖之处在于通过性格提示 + 反馈训练来制作完全属于自己的角色或场景。 很多 web3 项目已经进行了一些尝试来提供这些伴侣体验,例如 Belong Hearts、MoeMate 和 Imgnai。 Belong Hearts 开创了一种新颖的 NFT 铸造玩法,让用户与他们提供的角色聊天,直到用户搞到她的电话号码,从而可以被列入 NFT 铸造的白名单。一旦收到了 NFT,该 NFT 就可以让用户享受与角色的聊天体验,包括色情角色扮演以及生成的自拍。虽然产品的未来方向尚待确定,但围绕将代币经济学作为一种机制,让玩家将物品或代币赠给聊天机器人以影响她的情绪和关系水平的讨论非常多。 MoeMate 由 Webaverse 背后的团队创建,它同时提供了桌面版本和浏览器版本应用程序,用户可以轻松导入 vrm 模型,然后可以赋予其个性并与之交互。桌面版本让人想起了之前的一种名为 old-school paperclip assistant 的 AI 助理。 还有 Imgnai,它除了是上面提到的高质量图像生成器模型外,还通过完全集成的聊天机器人体验来解决 Nai 角色的拟人化问题。 归根结底,代币经济学的潜力在伴侣领域比比皆是,代币化 API、可交易的个性提示 (见下文)、链上游戏货币、代理支付、可交易饰品、角色游戏机制和代币限制访问等场景仅仅是未来潜在的探索范围中的一小部分。 个性市场 有趣的是,伴侣应用程序的兴起也引发了人格提示标准化的兴起,以及交换人格原语的平台。该领域有可能会向着高质量提示和场景的金融化的方向发展。例如,如果一个未经审查的开源 LLM 可以从包含标准化人格的 NFT 中读取元数据,那么人格 NFT 可以获得从中产生的版税从而让其创建者受益。 不过这也引出了另一个悬而未决的问题:由于许多顶级模型都受到 NSFW 内容的限制,因此必须创建可行的开源模型,然而这恰恰是基于代币的众筹和治理的绝好机会。 — 你可以查看我写的这篇文章来深入了解本章节提到一些想法:https://medium.com/1kxnetwork/virtual-beings-51606c041acf。 增强治理 DAO 治理的历史实际上是漫长的人类协作历史的演变。最终我们发现,有效地组织资源,最小化治理膨胀,消除摸鱼现象,以及发现软实力的低效或瓶颈是极其困难的。 使用 AI 作为 DAO 增强层的实验才刚刚开始,但它们的潜在影响是深远的。最常见的形式是使用训练有素的 LLM 来帮助将 DAO 内的劳动力资本引导到更有效的事务上,识别提案中的问题,并开放对贡献和投票的更广泛参与。还有一些更简单的工具,如 AwesomeQA,它通过搜索和自动会回复来提高 DAO 的效率。最终,我们预计 DAO 中的 “autonomous” 将随着时间的推移变得更加重要。 自治委员会和投票代理 Upstreet 已将多代理系统 (如 AutoGPT 等) 应用于他们的治理过程,作为一个早期的实验。每个代理都由 DAO 的一个子组定义,例如艺术家、开发者、BD 策略师、公关、社区经理等。然后这些代理的任务是分析来自贡献者的提案,并讨论其利弊。进而,代理们根据其对各自范围内的影响进行评分,并汇总分数。人类贡献者可以在投票决定结果之前评估他们的讨论和评分,因此本质来说,上它提供了一种多样化的并行评审服务。 这特别有趣,因为这个过程可以浮现出人类可能错过的提案的各个方面,或者使人类能够与人工智能代理就其后续影响进行辩论。 先进的协调系统 MakerDAO 也曾详细讨论过类似话题,以最少的人力投入实现自主治理决策的目标。他们完成了 Atlas 的概述,它描绘了一个包含所有与 Maker 治理相关的实时数据中心。这些数据单元以文档树的形式组织,可提供上下文以防止误读。Atlas 将采用 JSON 格式并标准化,以方便 AI 和编程工具使用它。 Atlas 可以被各种人工智能治理工具 (Governance AI Tools, GAIT) 使用,这些工具通过自动化交互和确定参与者任务的优先级来参与治理。示例用例包括: 项目投标:GAIT 可以通过处理文书工作和确保提案符合战略目标来简化生态系统参与者对项目投标的流程。 监控违反规则的行为:GAIT 可以帮助监控可交付成果和规则遵守情况,标记潜在问题以供人工审查。 专业建议整合:GAIT 可以将专业建议转化为格式化的提案,弥合治理和专业知识之间的差距。 数据集成:GAIT 可以轻松地集成新数据和经验,帮助 DAO 学习和适应新状况而不会重复错误。 语言包容性:GAIT 可以充当翻译器,使治理以多种语言进行,从而营造一个多元化和包容性的环境。 SubDAO:Atlas 和 GAIT 可以应用于 SubDAO,允许实验和快速开发,并能够从失败中吸取教训。 ? <> ? 我尤为兴奋的 Crypto x AI 的领域是游戏。该领域有很多新颖的游戏可供探索,例如程序内容游戏、生成式虚拟世界、基于 LLM 的叙事、AI 代理相互合作的合作游戏等等。 虽然 web2 中有很多关于新游戏的好例子,但在这里我们将重点介绍 web3 的例子。值得一提的是这篇学术文章《Generative Agents: Interactive Simulacra of Human Behavior》唤醒了许多人对多人工智能代理游戏环境的可能性探索。来自斯坦福大学和谷歌的研究人员通过将 LLM 应用于沙盒游戏环境中的代理展示了这种潜力。由 LLM 驱动的代理表现出令人印象深刻的行为包括传播派对邀请,建立友谊,约会,以及协调大家按时参加聚会等等,所有这些都基于单一的用户指定建议。该方法利用了一种架构,该架构扩展了 LLM 以存储和合成更高级别的反馈,从而让代理能够实现更为动态的行为规划。 这项研究是迄今为止 web3 中探索最多 (但仍处实验阶段) 的游戏的基础。核心思想是我们如何在模拟环境中使用具有高度自治性或特性的 AI 代理,并围绕它们打造有趣而富有趣味性的游戏。 Parallel TCG 团队的 Parallel Colony 通过让 AI 代理在游戏中为玩家收集资源和代币来探索这一概念。使用 ERC-6551 标准,AI 代理是可以代表用户在游戏中进行交易的 NFT 钱包。AI 代理可以创建、铸造和存储新的游戏道具,并且还具备由团队创建的微调 LLM 所定义的个性,使他们具有非标准化的行为和特质,这些行为和特质可以影响他们在游戏中的行动。 不过从概念上讲,最引人入胜的基于 AI 代理的游戏是 Upstreet。Upstreet 是一个虚拟世界项目,具有一些疯狂的创意,例如 AI 代理 SDK、程序任务、浏览器 + VR、拖放互操作性以及一个名为 “The Street” 的环境中的社交功能,玩家可以构建自己的体验并在其中互动。除了玩家之外,还有人工智能代理,开发人员 (及玩家) 可以部署影响游戏环境的个性和目标。最有趣的是他们对 AI Director 的研究和开发,这是一个 AI 代理,它决定一个目标,例如 “从最高的建筑物跳伞” 或 “开始一个新的宗教”,用户和代理作为挑战者参与其中。Director 会在每一个回合结束时确定获胜者,用奖品、代币和 NFT 奖励玩家和代理。这可能会导致非常有趣且复杂的代理与玩家的交互,我们非常高兴看到其发展,特别是,它可以直接导致高价值的 3D 环境研究和数据,为将来的更先进的模型提供更多的数据,OpenAI 似乎也对收购开源 Minecraft 风格的游戏颇感兴趣。 用于创建虚拟世界的生成工具是增强游戏的另一个领域。例如,Today 让玩家设计自己的虚拟岛屿并照顾 AI NPC 同伴。尤为独特的是他们使用生成创意工具来促进游戏内 UGC 的开发。由于游戏主要基于这些用户创建的岛屿,因此,为没有 3D 游戏开发或艺术技能的玩家提供丝滑的资产开发机会非常重要。可以说,围绕元宇宙风格的游戏玩法之所以低迷,很大程度上是因为缺乏内容,而从短期来看,恰恰可以通过使用生成工具来补救这一点。 AI 代理需要训练,而训练本身可以成为一个有趣的游戏供玩家探索。AI Arena 提供了一种新颖的 AI 代理训练方式,让玩家玩 Super Smash Bros 风格的游戏,通过模仿训练慢慢教 AI 代理参加比赛。由于 AI 代理不需要休息,因此它可以全天候地与始终活跃的竞争对手池进行竞争性锦标赛以获得奖品,同时玩家可以异步微调其游戏风格。这将培训变成了一种游戏,并通过代币经济学放大它的效用。 人类与强大的人工智能玩家进行大规模的合作游戏在过去是可以做到的,但随着代币经济学的融入,它被提升到了一个新的高度。来自 Modulus Labs 的 Leela vs. the World 是此类游戏形式的实验。在这个实验中,Modulus 采用了 Leela 国际象棋引擎,并通过 zk 电路验证它的输出。玩家可以投入资金押注人类与人工智能的对弈,从而形成一个有趣的预测市场。虽然考虑到目前 zk 的状态,该模型的验证时间会很长,但它无疑开辟了基于大规模协作的电子竞技预测市场和可验证且复杂的 AI 玩家治理机制的可能性挑战。 最后,纯链游或自主世界也将通过人工智能得到增强。关于该主题最引人注目的是大型知识模型 (Large Lore Models),它着眼于使用 LLM 协议层来创建持续的知识,这些知识可以在可修改和相互关联的游戏环境中进行互操作,玩家的行为在自主世界中同时影响多个游戏环境,因此应该携带更高维度的知识来促进故事情节。这非常适合构建在多链游戏环境中的抽象 LLM 层。 基础设施 AI x Crypto 基础设施本身就值得用一篇单独的文章介绍,但在这里我将简要介绍我们看到的一些正在形成想法。 分布式计算 要理解加密经济系统对计算的需求,首先要理解核心问题。迄今为止,GPU 容量存在极大的瓶颈,最好的硬件,如 H100,等待时间长达一年。与此同时,初创公司正在筹集巨额资金来购买硬件,政府正在争先恐后地为国防目的而采购,即使是像 OpenAI 这样资金最充裕的团队也因为计算能力有限而不得不暂停功能发布。 很多专注于去中心化计算和 DePIN 的团队在这里看到了机会:引导无许可的集群来满足需求,同时提供加密激励和最低利润,使网络在定价上与 web2 同行具有高度竞争力,同时为硬件供应商提供更好的回报。 机器学习大致可分为四个主要的计算工作量: 数据预处理:准备原始数据并将其转换为可用的格式。 训练:让 ML 模型在大型数据集上进行训练,以学习数据中的模式和关系。 微调:可以使用较小的数据集进一步优化 ML 模型,以提高特定任务的性能。 推理:运行经过训练和微调的模型以进行预测。 我们已经看到了像 Render 和 Akash 这样更通用的计算网络转向服务于更专业的计算,如 AI/ML。例如,Render 已经利用建立在他们网络之上的提供商如 io.net 来更直接地服务 AI 客户,而像 Akash 这样的供应商已经开始引入拥有需求的硬件供应商,并通过直接训练他们自己的模型来展示网络的力量,第一个案例是一个仅在无版权材料上训练的 Stable Diffusion fork。Livepeer 也正在专注于 AI 视频计算,因为他们已经有一个庞大的服务于视频转码用例的网络。 此外,一种专门针对 AI 计算的网络正在形成,这让我们认识到围绕协同和验证的核心挑战可以通过围绕 AI 构建链或模型来更直接地解决。Gensyn 是其中比较值得注意的例子,它构建了一个基于基板的 L1,专为并行化和验证而设计。该协议使用并行化将较大的计算工作负载拆分为任务,并将它们异步推送到网络。为了解决验证问题,Gensyn 使用了概率学习证明 (probabilistic proof-of-learning)、基于图的 pinpoint 协议以及基于 staking 和 slashing 的激励系统。尽管 Gensyn 网络尚未上线,但该团队预测,其网络上等效 V100 GPU 的每小时成本约为 0.40 美元。 储存之外,替代训练模型也在兴起,例如联合学习 (federated learning),在意识到区块链可以更适当地激励这些模型后,它在 web3 中复兴。简而言之,联合学习是一种多方独立训练模型的方法,并定期批处理更新并将其发送到全局模型。有很多实践案例,比如谷歌的键盘文本预测算法。在 web3 中,FedML 和 FLock 正在尝试将联合学习方法与代币激励相结合。 同样值得注意的是,像 Filecoin 和 Arweave 这样的去中心化数据存储,以及像 Space and Time 这样的数据库,可以在数据预处理方面发挥重要作用。 基于共识的 ML 使用区块链的另一种新颖的基础设施形式则是基于共识的机器学习 (ML) 概念。Bittensor 是这一概念的最突出例子:这是一种基于 Substrate 的 L1 区块链,旨在通过使用特定于应用的子网来提高机器学习的效率和协作。每个子网都有自己的激励系统,用于服务各种用例,从 LLM 到预测模型到生成性创新。Bittensor 独特之处在于它如何使用矿工协调优质输出:矿工通过提供他们的 ML 模型的智能输出(由验证者评级)来获得 TAO (其原生代币)。由于矿工因为最佳输出而获得激励,他们会不断改进自己的模型以保持竞争力,从而帮助 Bittensor 完成了在代币经济学的协调下实现更快的学习过程。 TAO 生态系统中最近令人兴奋的发展是动态 TAO 提案,将 Bittensor 过渡到围绕代币排放的更自动化、市场驱动的机制设计,以及推出的 Nous 子网以提供激励模型微调,以便与 OpenAI 等公司竞争。 我们可能会看到更多有关此类系统的尝试,例如让 mining 或共识以有利于质量的方式调节模型输出。 意图就是您所需要的一切 在DeFi中,MEV 领域的最新论点是关于用户意图以及使用经济同性 (economically-aligned) 的解调器来执行这些意图。关于意图的讨论通常百家齐放,但有一点已经变得越来越清晰了:用户的意图需要更高阶的语义上下文才能被解析成可执行代码。LLMs 可能会提供这个语义层。 Propellerheads 提出了迄今为止在意图空间中使用 LLM 的最清晰的愿景:https://www.propellerheads.xyz/blog/blockchain-and-llms。 简而言之,LLMs 可以通过语义理解,将接近匹配的意图转化为完全匹配的意图,从而帮助我们找到巧遇需求 (coincidences of wants, CoWs) 的机会。这可以通过向内意图重判 (例如 “购买 LUSD 代替 USDC 可以吗?我找到了一个匹配的限价订单,你将通过这个 CoW 节省 0.3% 的交易费用。”) 和向外意图重判 (例如 “我想购买你拥有的这个 BAYC,您愿意以 X ETH 的价格出售吗?”) 来实现。 当然还可以有其他结构,这在钱包和多重签名的后账户抽象背景下变得特别有趣。DAIN 和 Autonolas 等项目已经尝试使用代理作为钱包的签名者,例如,出于安全和基于意图的目的,与你的钱包交谈并让它代表你执行交易即将成为现实。 同样值得关注的是规模庞大 DeFi 用例,例如基于代理的预测市场、由 AI 管理的经济模型、以及 ML 参数化的 DeFi 应用程序,我的 zkML 文章提供了更为详细的介绍。 代理经济 迄今为止,我最喜欢的基础设施领域之一是人工智能代理经济。它源自我对世界的愿景,在这个世界中,每个人都有自己的代理,我们雇用那些高质量和训练有素的代理为我们服务,或者让自治代理在复杂的经济行为中实现我们的目标。为了做到这一点,代理必须有一种方式来支付和接收他们的服务费用。传统的支付模式绝对有可能为这些代理开放,但更有可能的是,鉴于其易用性、结算速度和无需许可的性质,代理将以加密货币进行交易。 Autonolas 和 DAIN 是该领域的典型案例。在 Autonolas 中,代理实际上是网络中的节点,致力于实现特定目标,这些节点由服务运营商维护,类似于 Keeper 网络。这些代理可用于各种服务,例如预言机、预测市场、消息传递等。DAIN 采用了类似的方法,使代理能够 “发现、交互、交易和与网络中的其他代理协作”。 其他创意 除上述内容外,我们还看到: 用于微调模型(如 BagelDB)的去中心化向量数据库。 用于 API 密钥的钱包和用于 AI 应用程序的 SIWE,例如 Window.ai 数据预配服务 索引和搜索工具,如 Kaito 区块浏览器和仪表板,例如 Modulus Labs 的 AI 验证仪表板,它现在正在验证 Upshot 模型的一系列推理。 开发助手,如 Dune 的链上 SQL 查询模型 模拟代理测试环境 用于数据抓取的带宽,如 Grass Network 合成数据和人类 RLHF 平台 DeSci 应用程序,例如 LabDAO 用于蛋白质折叠的分布式 bioML 工具 web3 中涌现出了无数的想法,用于服务于 AI 的各个领域,因此此处仅提供重点内容,但我强烈建议探索上述项目以深入了解其全貌。 这一切的交汇 AI 和 Crypto 是协同作用的。两者都倾向于开源、抗审查,并正在创造历史上最大的财富转移。他们需要彼此,并解决彼此的核心挑战。 对于 Crypto 来说,AI 解决了用户体验中的问题,促进了更具创造性的链上用例,增强了去中心化组织和智能合约的能力,并在应用和基础设施层解锁了真正的创新。 对于 AI 来说,Crypto 解决了真实性和出处问题,加强了围绕开源模型和数据集的协调,有助于引导计算和数据,并使创作者和代理能够更直接地参与到后人工智能经济中去。 现在的挑战是加密黑客、团队和项目了解并接受这种转变。创造力是无限的,我们正站在这一切的交汇处。 如果你有兴趣了解更多关于这些交汇点的信息,请参加我们在 ETHDenver 举行的 Convergence 会议。 来源:金色财经lg...