全球数字财富领导者

北京大学取得基于稀疏编码的深度学习网络结构搜索的图像识别方法专利,使得图像识别的性能优异

2023-12-28 17:08:25
金融界
金融界
关注
0
0
获赞
粉丝
喜欢 0 0收藏举报
— 分享 —
摘要:金融界2023年12月28日消息,据国家知识产权局公告,北京大学取得一项名为“基于稀疏编码的深度学习网络结构搜索的图像识别方法“,授权公告号CN111967528B,申请日期为2020年8月。专利摘要显示,本发明公布了一种基于稀疏编码的深度学习网络结构搜索的图像识别方法,将基于梯度的可微分网络模型结构进行优化,构造用于在原始高维空间经压缩后映射的低维空间上进行结构搜索的网络模型,再通过稀疏编码技术使得压缩后的低维空间的解对应于原始空间的稀疏解,搜索时优化的网络模型结构即为重训练时的结构,应用于搜索?重训练两阶段图像识别以及搜索?重训练合并一阶段图像识别。本发明在搜索阶段的网络即具有稀疏性,在搜索训练阶段最终收敛的结构即为最终搜到的结构,网络结构搜索更加高效合理,使得图像识别的性能优异。

金融界2023年12月28日消息,据国家知识产权局公告,北京大学取得一项名为“基于稀疏编码的深度学习网络结构搜索的图像识别方法“,授权公告号CN111967528B,申请日期为2020年8月。

专利摘要显示,本发明公布了一种基于稀疏编码的深度学习网络结构搜索的图像识别方法,将基于梯度的可微分网络模型结构进行优化,构造用于在原始高维空间经压缩后映射的低维空间上进行结构搜索的网络模型,再通过稀疏编码技术使得压缩后的低维空间的解对应于原始空间的稀疏解,搜索时优化的网络模型结构即为重训练时的结构,应用于搜索‑重训练两阶段图像识别以及搜索‑重训练合并一阶段图像识别。本发明在搜索阶段的网络即具有稀疏性,在搜索训练阶段最终收敛的结构即为最终搜到的结构,网络结构搜索更加高效合理,使得图像识别的性能优异。

敬告读者:本文为转载发布,不代表本网站赞同其观点和对其真实性负责。FX168财经仅提供信息发布平台,文章或有细微删改。
go